## UNIT 5 - (CALC 25.0) Infinite Series RETEACH

Name $\qquad$ PER $\qquad$ DATE $\qquad$
The Taylor series for $\sin x$ about $x=0$ is $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$. If $f$ is a function such that
$f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of $x^{7}$ in the Taylor series for $f(x)$ about $x=0$ is
(A) $\frac{1}{7!}$
(B) $\frac{1}{7}$
(C) 0
(D) $-\frac{1}{42}$
(E) $-\frac{1}{7!}$

1. What function is defined by a Taylor series in the problem above?
2. What series do you need to answer the question? How do you know?
3. What is the Taylor series for $\mathrm{f}^{\prime}(\mathrm{x})$ ? List the first three terms.
4. What can we do to the Taylor series of $f^{\prime}(x)$ to obtain the Taylor series $f(x)$ ?

## QUICK CHECK!

10. For $-1<x<1$ if $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n-1}}{2 n-1}$, then $f^{\prime}(x)=$
(A) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n-2}$
(B) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n-2}$
(C) $\sum_{n=1}^{\infty}(-1)^{2 n} x^{2 n}$
(D) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n}$
(E) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n}$

What is the coefficient of $x^{6}$ in the Taylor series for $\frac{e^{3 x^{2}}}{2}$ about $x=0$ ?
(A) $\frac{1}{1440}$
(B) $\frac{81}{160}$
(C) $\frac{9}{4}$
(D) $\frac{9}{2}$
(E) $\frac{27}{2}$

## FRQ!

6. The function $g$ is continuous for all real numbers $x$ and is defined by

$$
g(x)=\frac{\cos (2 x)-1}{x^{2}} \text { for } x \neq 0 .
$$

(a) Use L'Hospital's Rule to find the value of $g(0)$. Show the work that leads to your answer.
(b) Let $f$ be the function given by $f(x)=\cos (2 x)$. Write the first four nonzero terms and the general term of the Taylor series for $f$ about $x=0$.
(c) Use your answer from part (b) to write the first three nonzero terms and the general term of the Taylor series for $g$ about $x=0$.
(d) Determine whether $g$ has a relative minimum, a relative maximum, or neither at $x=0$. Justify your answer.

