UNIT 1

STATION I - One and Two Sided LIMITS

1.0 Students demonstrate knowledge of both the formal definition and the graphical interpretation of limit of values of functions. This knowledge includes one-sided limits, infinite limits, and limits at infinity. Students know the definition of convergence and divergence of a function as the domain variable approaches either a number or infinity:

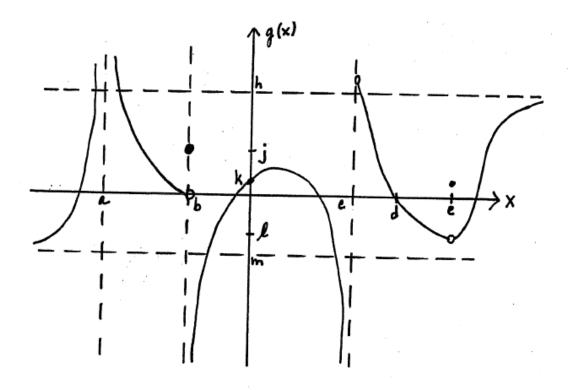
LEVEL 1

- 1. What is the definition of a limit in Calculus?
- 2. Complete the following sentence.

In order for the limit to exist at a point, both the _____ and the _____ must be _____.

LEVEL 2

: Find each limit


a)
$$\lim_{x\to 1} \left(-x^2+1\right)$$

b)
$$\lim_{x \to 3} \frac{\sqrt{x+1}}{x-4}$$

c)
$$\lim_{h\to 0} (3h^2 + 2h)$$

d)
$$\lim_{h\to 0} (3x^2 - 2xh + 5h)$$

LEVEL 3

- 1. $\lim_{x \to a^{-}} g(x)$
- 2. $\lim_{x \to b^+} g(x)$
- 3. $\lim_{x \to b^{-}} g(x)$
- 4. $\lim_{x \to c^+} g(x)$
- 5. $\lim_{x \to d} g(x)$