How to Solve Limits at Infinity by Using Horizontal Asymptotes

Horizontal asymptotes and limits at infinity always go hand in hand. You can't have one without the other. If you've got a rational function like
$f(x)=\frac{3 x-7}{2 x+8}$
determining the limit at infinity or negative infinity is the same as finding the location of the horizontal asymptote.
Here's what you do. First, note the degree of the numerator (that's the highest power of x in the numerator) and the degree of the denominator. Now, you've got three cases:

- If the degree of the numerator is greater than the degree of the denominator, for example:

$$
f(x)=\frac{6 x^{4}+x^{3}-7}{2 x^{2}+8}
$$

there's no horizontal asymptote and the limit of the function as x approaches infinity (or negative infinity) does not exist.

- If the degree of the denominator is greater than the degree of the numerator, for example:

$$
g(x)=\frac{4 x^{2}-9}{x^{3}+12}
$$

the x-axis (that's the line $y=0$) is the horizontal asymptote and
$\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow-\infty} g(x)=0$.

- If the degrees of the numerator and denominator are equal, take the coefficient of the highest power of x in the numerator and divide it by the coefficient of the highest power of x in the denominator. That quotient gives you the answer to the limit problem and the heightof the asymptote.
For example, if $h(x)=\frac{4 x^{3}-10 x+1}{5 x^{3}+2 x^{2}-x}, \lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow-\infty} h(x)=\frac{4}{5}$, and h has a
horizontal asymptote at $y=\frac{4}{5}$.
Keep in mind that substitution often doesn't work for problems that deal with limits at infinity.
If you try plugging ∞ into x in any of the rational functions in the preceding list,
you get $\frac{\infty}{\infty}$.
But that does not equal 1. (Nor, by the way, does infinity minus infinity equal zero.)
Keep in mind that a result of $\frac{\infty}{\infty}$ or $(\infty-\infty)$ tells you nothing about the answer
to a limit problem.
About us
About For Dummies
Contact Us
Privacy Policy
Terms and Conditions
Advertise with Us
Manage Your E-Mail
Newsletters

More From Dummies
Mobile Site
My Account
Dummies B2B Services Online Test Banks
eLearning
Mobile Apps
Topics A-Z
Small Business \& Careers
Computers \& Software
Consumer Electronics
Crafts \& Hobbies
Education \& Languages
Food \& Drink

[^0]How to Solve Limits at Infinity by Using Horizontal Asymptotes - F... http://www.dummies.com/how-to/content/how-to-solve-limits-at-infi...

[^0]: Home \& Garden Internet \& Social Media Music \& Creative Arts Personal Finance Pets
 Photography \& Video
 Relationships \& Family

