Domain and range:

A function's domain has all possible input (x) values.

A function's range has all possible output (y) values.

Example 1: $f(x) = \frac{1}{x}$'s domain is $(-\infty,0) \cup (0,\infty)$, and it's range is also $(-\infty,0) \cup (0,\infty)$. Graph this function and verify its domain and range.

Example 2: $g(x) = \sqrt{x}$'s domain is $[0, \infty)$, and it's range is also $[0, \infty)$. Graph this function to verify its domain and range.

Example 3: $h(x) = \sqrt[3]{x}$'s domain is $(-\infty, \infty)$, and it's range is also $(-\infty, \infty)$. Graph this function to verify its domain and range.

Function	Domain
f(x) = 2x	
$f(x) = x^2 + 1$	
$f(x) = \frac{1}{x+1}$ $f(x) = \frac{2}{100-x} + 1$ $f(x) = -\frac{1}{x^2 + x}$ $f(x) = \frac{1}{x^3 + x^2 - 6x} - 2$ $f(x) = \frac{1}{x^2 + 1}$ $f(x) = \sqrt{x^2}$	
$f(x) = \frac{2}{100 - x} + 1$	
$f(x) = -\frac{1}{x^2 + x}$	
$f(x) = \frac{1}{x^3 + x^2 - 6x} - 2$	
$f(x) = \frac{1}{x^2 + 1}$	
$f(x) = \sqrt{x^2}$	
$f(x) = (\sqrt{x})^2$	
$f(x) = \sqrt{x+1}$	
$f(x) = \sqrt{x - 1} + 5$	
$f(x) = -\sqrt{x-1} + 5$	
$f(x) = \sqrt{-x}$	
$f(x) = \frac{1}{\sqrt{x+1}}$	
$f(x) = 3 \cdot \sqrt[6]{2x - 6}$	
$f(x) = 4 \cdot \sqrt[3]{-x} + 1$	
$f(x) = 4 \cdot \sqrt[4]{-x} + 1$	

Solutions are on the next page.

Solutions:

Function	Domain
f(x) = 2x	$(-\infty, \infty)$
$f(x) = x^2 + 1$	$(-\infty, \infty)$
$f(x) = \frac{1}{x+1}$	$(-\infty, -1)$ U $(-1, \infty)$
$f(x) = \frac{1}{x+1}$ $f(x) = \frac{2}{100-x} + 1$	(-∞, 100)U(100, ∞)
$f(x) = -\frac{1}{x^2}$	$(-\infty, -1)U(-1, 0)U(0, \infty)$
$f(x) = \frac{1}{x^3 + x^2 - 6x} - 2$	$\{x x\in R, x\neq -3, 0, 2\}$
$f(x) = \frac{1}{x^3 + x^2 - 6x} - 2$ $f(x) = \frac{1}{x^2 + 1}$ $f(x) = \sqrt{x^2}$	$(-\infty,\infty)$
$f(x) = \sqrt{x^2}$	$(-\infty, \infty)$
$f(x) = (\sqrt{x})^2$	$[0,\infty)$
$f(x) = \sqrt{x+1}$	[−1, ∞)
$f(x) = \sqrt{x-1} + 5$	$[1,\infty)$
$f(x) = -\sqrt{x-1} + 5$	$[1,\infty)$
$f(x) = \sqrt{-x}$	$(-\infty,0]$
$f(x) = \frac{1}{\sqrt{x+1}}$	(−1, ∞)
$f(x) = 3 \cdot \sqrt[6]{2x - 6}$	[3, ∞)
$f(x) = 4 \cdot \sqrt[3]{-x} + 1$	$(-\infty,\infty)$
$f(x) = 4 \cdot \sqrt[4]{-x} + 1$	$(-\infty,0]$