QUESTION 2

Let f^{\prime} be the continuous function defined on $[-3,3]$ whose graph is shown above. The graph consists of three linear segments, with a sinusoidal curve on the interval $[-1,1]$.
(a) Find the values of $f^{\prime}(-3)$ and $f^{\prime \prime}(-3)$.
(b) Find the x-coordinate of each point at which the graph of f has a horizontal tangent line. For each of these points, determine whether f has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers.
(c) For $-3<x<3$, find all values of x for which the graph of f has a point of inflection. Explain your reasoning.

(a) $f^{\prime}(-3)=-0.5, f^{\prime \prime}(-3)=-1.5$
(b) The graph of f has a horizontal tangent line where $f^{\prime}(x)=0$. This occurs at $x=-10 / 3, x=-1, x=0$, and $x=1$.
$f^{\prime}(x)$ changes sign from positive to negative at $x=-10 / 3$ and at $x=1$, so f has a relative maximum at $x=-10 / 3$ and at $x=1$.
$f^{\prime}(x)$ changes sign from negative to positive at $x=0$, so f has a relative minimum at $x=0$.
$f^{\prime}(x)$ does not change sign at $x=-1$, so f has neither a minimum nor a maximum at $x=-1$.
(c) The graph of f has a point of inflection at each of $x=-2$, $x=-1, x=-0.5$, and $x=0.5$, because $f^{\prime \prime}$ (or the slope of f^{\prime}) changes sign at each of these values.
$2:\left\{\begin{array}{l}1: f^{\prime}(-3) \\ 1: f^{\prime \prime}(-3)\end{array}\right.$
$4:\left\{\begin{array}{l}2: x=-10 / 3, x=-1, x=0, \\ \text { and } x=1 \\ 2: \text { classification of relative } \\ \text { extrema with justifications }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { answers } \\ 1: \text { explanation }\end{array}\right.$

