QUESTION 1

A particle is moving along the x-axis for $0 \leq t \leq 2$. The particle's position, $x(t)$, is not given. The particle's velocity is given by the function $v(t)=\sin \left(t^{2}-0.5 t\right)-0.75$.
(a) What is the acceleration of the particle at $t=1.5$?
(b) Is the speed of the particle increasing or decreasing at time $t=1.8$? Give a reason for your answer.
(c) For $0 \leq t \leq 2$, at what value(s) of t does the particle change direction?
(d) For $0 \leq t \leq 2$, in what time interval(s) is the particle's speed decreasing? Show the reasoning that lead to your answer.
(a) $a(t)=v^{\prime}(t), \quad a(1.5)=0.17684$
(b) $v(1.8)=-0.03153$ (or -0.03154), $a(1.8)=-2.15624$ (or -2.15625)

The speed is increasing at time $t=1.8$, because velocity and acceleration have the same sign (or are both negative).
(c) $v(t)=0$ when $t=1.204$, and when $t=1.784$ (or 1.785). $v(t)$ changes sign from negative to positive at time $t=1.204$. $v(t)$ changes sign from positive to negative at time $t=1.784$.

So, the particle changes direction at $t=1.204$ and at $t=1.784$.
(d) $a(t)=0$ when $t=0.25$, and when $t=1.528$.
$a(t)$ changes sign from negative to positive at time $t=0.25$. $a(t)$ changes sign from positive to negative at time $t=1.528$.

The speed of the particle is decreasing in the time intervals $(0.25,1.204)$ and $(1.528,1.784)$, because both velocity and acceleration have different signs in those time intervals.

1: answer
$2:\left\{\begin{array}{l}1: \text { conclusion } \\ 1: \text { reason }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers } v(t)=0 \\ 1: \text { both time values }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \text { the interval }(0.25,1.204) \\ 1: \text { the interval }(1.528,1.784) \\ 2: \text { analysis }\end{array}\right.$

