Practice: Modeling with Functions (3A)

3A \quad I can apply the problem-solving algorithm: approach (know), set-up (given, want), procedure (analysis), and justification/reasoning to solve a variety of complex and novel problems and explain the purpose of the strategy.

1. A rectangular building lot is three times as long as it is wide. Find a function that models its area A in terms of its width w.

Approach:
Set-Up:

Procedure:
2. A rectangular box has a square base. It's height is half the width of the base. Find a function that models its volume V in terms of its width w.

Approach:

Set-Up:

Procedure:
3. The height of a cylinder is four times its radius. Find a function that models the volume V in terms of its radius r.

Approach:
Set-Up:

Procedure:
4. A rectangle has an area of $16 \mathrm{~m}^{2}$. Find a function that models its perimeter P in terms of the length l.

Approach:

Set-Up:
Procedure:
5. A poster is 10 inches longer that it is wide. Find a function that models it's area A in terms of its width w.
6. Find a function that models the area A of an equilateral triangle in terms of the length x of one of its sides.
7. Find a function that models the surface area, SA, of a cube in terms of its volume V.
8. A woman that is 5 feet tall is standing near a street lamp that is 12 ft tall. Find a function that models the length, L , of her shadow in terms of her distance, d, from the base of the lamp.
9. Two ships leave port at the same time. One sails south at $15 \mathrm{mi} / \mathrm{h}$ and the other sails east at $20 \mathrm{mi} / \mathrm{h}$. Find a function that models the distance, D, between the ships in terms of the time, t, (in hours) elapsed since their departure.
10. The sum of two positive numbers is 60 . Find a function that models their product P in terms of x, one of the numbers.
11. A rectangle is inscribed in a semicircle of radius 10 , as shown in the figure. Find a function that models the area A of the rectangle in terms of its height h.

12. Find two positive numbers whose sum is 100 and the sum of whose squares is a minimum.

