Worksheet 1.5A, Function composition MATH 1410

- 1. Given the functions f and g, below, find the composition function $f \circ g$. (The function $(f \circ g)(x)$ is the same as f(g(x)).
 - (a) $f(x) = x^2$; $g(x) = \sqrt{x}$.
 - (b) $f(x) = \sqrt{x}; g(x) = x^2.$
 - (c) $f(x) = x^2 1; g(x) = x + 2.$
 - (d) $f(x) = x + 2; g(x) = x^2 1.$
 - (e) f(x) = x + 3 and $g(x) = x^2 10$
 - (f) $f(x) = e^x$; $g(x) = x^2$.
 - (g) $f(x) = x^2$; $g(x) = e^x$.
- 2. Given the functions f and g, below, find the composition functions $f \circ g$ and $g \circ f$. (Please distinguish between your answer for $f \circ g$ and $g \circ f$.)
 - (a) $f(x) = x^2 + 1$ and $g(x) = \sqrt{3}$.
 - (b) $f(x) = x^3 + 2$ and $g(x) = \sqrt[3]{5}$.
 - (c) $f(x) = x^2 + 9$ and $g(x) = \sqrt{x}$.
 - (d) $f(x) = x^2 + 6x + 9$ and $g(x) = \sqrt{x}$.
 - (e) $f(x) = x^2 + 5$ and $g(x) = \sqrt{x-5}$.
- 3. For each of the functions f(x) and h(x) below, find a function g(x) such that $h(x) = (f \circ g)(x)$.
 - (a) $f(x) = 10^x$, $h(x) = 10^{(x^2 17)}$.
 - (b) $f(x) = \sqrt{x}, h(x) = \sqrt{x^2 + 4}.$
 - (c) $f(x) = x^3$, $h(x) = (\sin(x))^3$

4. For each function h given below, decompose h into the composition of two functions f and g so that $h = f \circ g$.

(a)
$$h(x) = (x+5)^2$$

(b)
$$h(x) = \sqrt[3]{5x^2 + 1}$$

(c)
$$h(x) = 2^{\cos x}$$

(d)
$$h(x) = \cos(2^x)$$

(e)
$$h(x) = \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1} + 1}$$