Linear Approximation (cont.)

Date \qquad Period \qquad

Use differentials to solve each problem.

1) The hypotenuse of a right triangle is known to be exactly 5 in . One of the acute angles is measured to be 45°, with a possible error of $\pm 1^{\circ}$. Estimate the possible propagated error in the side opposite to the measured angle.
2) The hypotenuse of a right triangle is known to be exactly 7 cm . One of the acute angles is measured to be 30°, with a possible error of $\pm 3^{\circ}$. Estimate the possible propagated error in the side opposite to the measured angle.
3) The radius of a circle is measured to be 6 cm , with a possible error of $\pm \frac{1}{10} \mathrm{~cm}$. Estimate the possible propagated error in the calculated area.
4) The sides of a square are measured to be 7 ft , with a possible error of $\pm \frac{3}{10} \mathrm{ft}$. Estimate the possible propagated error in the calculated area.
5) The sides of a cube are measured to be 6 in, with a possible error of $\pm \frac{1}{10}$ in. Estimate the possible propagated error in the calculated volume.
6) The hypotenuse of a right triangle is known to be exactly 10 in . One of the acute angles is measured to be 60°, with a possible error of $\pm 1^{\circ}$. Estimate the possible propagated error in the side opposite to the measured angle.
7) The sides of a square are measured to be 4 ft , with a possible error of $\pm \frac{1}{10} \mathrm{ft}$. Estimate the possible propagated error in the calculated area.
8) The sides of a cube are measured to be 5 in, with a possible error of $\pm \frac{1}{5}$ in. Estimate the possible propagated error in the calculated volume.
9) The radius of a circle is measured to be 7 cm , with a possible error of $\pm \frac{1}{5} \mathrm{~cm}$. Estimate the possible propagated error in the calculated area.
10) The hypotenuse of a right triangle is known to be exactly 7 ft . One of the acute angles is measured to be 30°, with a possible error of $\pm 1^{\circ}$. Estimate the possible propagated error in the side opposite to the measured angle.

Answers to Linear Approximation (cont.) (ID: 1)

1) $x=5 \sin \theta, d x=5 \cos \theta d \theta$
$\theta=\frac{\pi}{4}$ radians, $d \theta= \pm \frac{\pi}{180}$ radians
$\Delta x \approx d x= \pm \frac{\pi \sqrt{2}}{72} \approx \pm 0.0617 \mathrm{in}$
2) $A=\pi r^{2}, d A=2 \pi r d r$
$r=6, d r= \pm 0.1$
$\Delta A \approx d A= \pm \frac{6 \pi}{5} \approx \pm 3.7699 \mathrm{~cm}^{2}$
3) $V=s^{3}, d V=3 s^{2} d s$

$$
s=6, d s= \pm 0.1
$$

$\Delta V \approx d V= \pm \frac{54}{5}= \pm 10.8 \mathrm{in}^{3}$
7) $A=s^{2}, d A=2 s d s$
$s=4, d s= \pm 0.1$

$$
\Delta A \approx d A= \pm \frac{4}{5}= \pm 0.8 \mathrm{ft}^{2}
$$

9) $A=\pi r^{2}, d A=2 \pi r d r$

$$
r=7, d r= \pm 0.2
$$

$\Delta A \approx d A= \pm \frac{14 \pi}{5} \approx \pm 8.7965 \mathrm{~cm}^{2}$
2) $x=7 \sin \theta, d x=7 \cos \theta d \theta$ $\theta=\frac{\pi}{6}$ radians, $d \theta= \pm \frac{\pi}{60}$ radians $\Delta x \approx d x= \pm \frac{7 \pi \sqrt{3}}{120} \approx \pm 0.3174 \mathrm{~cm}$
4) $\begin{aligned} & A=s^{2}, d A=2 s d s \\ & s=7, d s= \pm 0.3\end{aligned}$
$\Delta A \approx d A= \pm \frac{21}{5}= \pm 4.2 \mathrm{ft}^{2}$
6) $x=10 \sin \theta, d x=10 \cos \theta d \theta$
$\theta=\frac{\pi}{3}$ radians, $d \theta= \pm \frac{\pi}{180}$ radians
$\Delta x \approx d x= \pm \frac{\pi}{36} \approx \pm 0.0873$ in
8) $V=s^{3}, d V=3 s^{2} d s$
$s=5, d s= \pm 0.2$
$\Delta V \approx d V= \pm 15 \mathrm{in}^{3}$
10) $x=7 \sin \theta, d x=7 \cos \theta d \theta$
$\theta=\frac{\pi}{6}$ radians, $d \theta= \pm \frac{\pi}{180}$ radians
$\Delta x \approx d x= \pm \frac{7 \pi \sqrt{3}}{360} \approx \pm 0.1058 \mathrm{ft}$

