# AP Calculus AB <br> Limits and Continuity <br> Worksheet \#2 

## Limits and Continuity

## Concepts and Skills

In this section students will review the following topics:

- General properties of limits
- How to find limits using algebraic expressions, tables, and graphs.
- Horizontal and vertical asymptote
- Continuity
- Removable, jump, and infinite discontinuities
- Some important theorems, including the Squeeze Theorem, the Extreme Value Theorem, and the Intermediate Value Theorem.


## Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+4}$ is
(A) 1
(B) 0
(C) $-\frac{1}{2}$
(D) -1
(E) $\infty$
2. $\lim _{x \rightarrow \infty} \frac{4-x^{2}}{x^{2}-1}$ is
$\qquad$
(A) 1
(B) 0
(C) -4
(D) -1
(E) $\infty$
3. $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-2 x-3}$ is
(A) 0
(B) 1
(C) $\frac{1}{4}$
(D) $\infty$
(E) none of these
4. $\lim _{x \rightarrow 0} \frac{x}{x}$ is
(A) 1
(B) 0
(C) $\infty$
(D) -1
(E) nonexistent
5. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$ is
$\qquad$
(A) 4
(B) 0
(C) 1
(D) 3
(E) $\infty$
6. $\lim _{x \rightarrow \infty} \frac{4-x^{2}}{4 x^{2}-x-2}$ is
(A) -2
(B) $-\frac{1}{4}$
(C) 1
(D) 2
(E) nonexistent
7. $\lim _{x \rightarrow-\infty} \frac{5 x^{3}+27}{20 x^{2}+10 x+9}$ is
(D) 3
(E) $\infty$
(
(C) 0
(A) $-\infty$
(B) -1

$$
8
$$

8. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+27}{x^{3}-27}$ is
(A) 3
(B) $\infty$
(C) 1
(D) -1
(E) 0
9. $\lim _{x \rightarrow \infty} \frac{2^{-x}}{2^{x}}$ is
(A) -1
(B) 1
(C) 0
(D) $\infty$
(E) none of these
10. $\lim _{x \rightarrow-\infty} \frac{2^{-x}}{2^{x}}$ is
(A) -1
(B) 1
(C) 0
(D) $\infty$
(E) none of these
(D)
11. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$
(A) $=0$
(B) $=\frac{1}{5}$
(C) $=1$
(D) $=5$
(E) does not exist
12. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}$
(A) $=0$
(B) $=\frac{2}{3}$
(C) $=1$
(D) $=\frac{3}{2}$
(E) does not exist
13. The graph of $y=\arctan x$ has
(A) vertical asymptotes at $x=0$ and $x=\pi$
(B) horizontal asymptotes at $y= \pm \frac{\pi}{2}$
(C) horizontal asymptotes at $y=0$ and $y=\pi$
(D) vertical asymptotes at $x= \pm \frac{\pi}{2}$
(E) none of these
14. The graph of $y=\frac{x^{2}-9}{3 x-9}$ has
(A) a vertical asymptote at $x=3$
(B) a horizontal asymptote at $y=\frac{1}{3}$
(C) a removable discontinuity at $x=3$
(D) an infinite discontinuity at $x=3$
(E) none of these
15. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+3 x}$ is
(A) 1
(B) $\frac{1}{3}$
(C) 3
(D) $\infty$
(E) $\frac{1}{4}$
16. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ is
(A) $\infty$
(B) 1
(C) nonexistent
(D) -1
(E) none of these
17. Which statement is true about the curve $y=\frac{2 x^{2}+4}{2+7 x-4 x^{2}}$ ?
(A) The line $x=-\frac{1}{4}$ is a vertical asymptote.
(B) The line $x=1$ is a vertical asymptote.
(C) The line $y=-\frac{1}{4}$ is a horizontal asymptote.
(D) The graph has no vertical or horizontal asymptote.
(E) The line $y=2$ is a horizontal asymptote.
18. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{(2-x)(2+x)}$ is
(A) -4
(B) -2
(C) 1
(D) 2
(E) nonexistent
19. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ is
(A) 0
(B) nonexistent
(C) 1
(D) -1
(E) none of these
20. $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$ is
(A) 0
(B) $\infty$
(C) nonexistent
(D) -1
(E) 1
21. $\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi-x}$ is
(A) 1
(B) 0
(C) $\infty$
(D) nonexistent
(E) none of these
22. Let $f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 4 & \text { if } x=1 .\end{cases}$

Which of the following statements is (are) true?
I. $\lim _{x \rightarrow 1} f(x)$ exists
II. $f(1)$ exists
III. $f$ is continuous at $x=1$
(A) I only
(B) II only
(C) I and II
(D) none of them
(E) all of them
23. If $\left\{\begin{array}{l}f(x)=\frac{x^{2}-x}{2 x} \text { for } x \neq 0, \\ f(0)=k,\end{array}\right.$ and if $f$ is continuous at $x=0$, then $k=$
(A) -1
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$
(E) 1
24. Suppose $\left\{\begin{array}{l}f(x)=\frac{3 x(x-1)}{x^{2}-3 x+2} \text { for } x \neq 1,2, \\ f(1)=-3, \\ f(2)=4 .\end{array}\right.$

Then $f(x)$ is continuous
(A) except at $x=1$
(B) except at $x=2$
(C) except at $x=1$ or 2
(D) except at $x=0,1$, or 2
(E) at each real number
25. The graph of $f(x)=\frac{4}{x^{2}-1}$ has
(A) one vertical asymptote, at $x=1$
(B) the $y$-axis as vertical asymptote
(C) the $x$-axis as horizontal asymptote and $x= \pm 1$ as vertical asymptotes
(D) two vertical asymptotes, at $x= \pm 1$, but no horizontal asymptote
(E) no asymptote
26. The graph of $y=\frac{2 x^{2}+2 x+3}{4 x^{2}-4 x}$ has
(A) a horizontal asymptote at $y=+\frac{1}{2}$ but no vertical asymptote
(B) no horizontal asymptote but two vertical asymptotes, at $x=0$ and $x=1$
(C) a horizontal asymptote at $y=\frac{1}{2}$ and two vertical asymptotes, at $x=0$ and $x=1$
(D) a horizontal asymptote at $x=2$ but no vertical asymptote
(E) a horizontal asymptote at $y=\frac{1}{2}$ and two vertical asymptotes, at $x= \pm 1$
27. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}+x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$.

Which of the following statements is (are) true?
I. $f(0)$ exists
II. $\lim _{x \rightarrow 0} f(x)$ exists
III. $f$ is continuous at $x=0$
(A) I only
(B) II only
(C) I and II only
(D) all of them
(E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.
28. If $[x]$ is the greatest integer not greater than $x$, then $\lim _{x \rightarrow 1 / 2}[x]$ is
(A) $\frac{1}{2}$
(B) 1
(C) nonexistent
(D) 0
(E) none of these
29. (With the same notation) $\lim _{x \rightarrow-2}[x]$ is
(A) -3
(B) -2
(C) -1
(D) 0
(E) none of these
30. $\lim _{x \rightarrow \infty} \sin x$
(A) is -1
(B) is infinity
(C) oscillates between -1 and 1
(D) is zero
(E) does not exist
31. The function $f(x)= \begin{cases}x^{2} / x & (x \neq 0) \\ 0 & (x=0)\end{cases}$
(A) is continuous everywhere
(B) is continuous except at $x=0$
(C) has a removable discontinuity at $x=0$
(D) has an infinite discontinuity at $x=0$
(E) has $x=0$ as a vertical asymptote

