AP Calculus AB Limits and Continuity Worksheet # 2

Limits and Continuity

Concepts and Skills

In this section students will review the following topics:

- General properties of limits
- How to find limits using algebraic expressions, tables, and graphs.
- Horizontal and vertical asymptote
- Continuity
- Removable, jump, and infinite discontinuities
- Some important theorems, including the Squeeze Theorem, the Extreme Value Theorem, and the Intermediate Value Theorem.

102 AP Calculus

Practice Exercises

Part A. Directions: Answer these questions *without* using your calculator.

- 1. $\lim_{x \to 2} \frac{x^2 4}{x^2 + 4}$ is (A) 1 (B) 0 (C) $-\frac{1}{2}$ (D) -1 (E) ∞
- 2. $\lim_{x \to \infty} \frac{4 x^2}{x^2 1}$ is (A) 1 (B) 0 (C) -4 (D) -1 (E) ∞
- 3. $\lim_{x \to 3} \frac{x-3}{x^2-2x-3}$ is (A) 0 (B) 1 (C) $\frac{1}{4}$ (D) ∞ (E) none of these
- 4. $\lim_{x \to 0} \frac{x}{x}$ is (A) 1 (B) 0 (C) ∞ (D) -1 (E) nonexistent
- 5. $\lim_{x \to 2} \frac{x^3 8}{x^2 4}$ is (A) 4 (B) 0 (C) 1 (D) 3 (E) ∞
- 6. $\lim_{x \to \infty} \frac{4 x^2}{4x^2 x 2}$ is (A) -2 (B) $-\frac{1}{4}$ (C) 1 (D) 2 (E) nonexistent
 - 7. $\lim_{x \to \infty} \frac{5x^3 + 27}{20x^2 + 10x + 9}$ is (A) $-\infty$ (B) -1 (C) 0 (D) 3 (E) ∞
 - 8. $\lim_{x \to \infty} \frac{3x^2 + 27}{x^3 27}$ is (A) 3 (B) ∞ (C) 1 (D) -1 (E) 0
 - 9. $\lim_{x \to \infty} \frac{2^{-x}}{2^x}$ is (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these
 - **10.** $\lim_{x \to \infty} \frac{2^{-x}}{2^x}$ is (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these

Limits and Continuity 103

 $\lim_{x\to 0} \frac{\sin 5x}{r}$ 11. (A) = 0 (B) = $\frac{1}{5}$ (C) = 1 (D) = 5 (E) does not exist $\lim_{x\to 0}\frac{\sin 2x}{3x}$ 12. (A) = 0 (B) = $\frac{2}{3}$ (C) = 1 (D) = $\frac{3}{2}$ (E) does not exist 13. The graph of $y = \arctan x$ has (A) vertical asymptotes at x = 0 and $x = \pi$ (B) horizontal asymptotes at $y = \pm \frac{\pi}{2}$ (C) horizontal asymptotes at y = 0 and $y = \pi$ (D) vertical asymptotes at $x = \pm \frac{\pi}{2}$ (E) none of these The graph of $y = \frac{x^2 - 9}{3x - 9}$ has 14. (A) a vertical asymptote at x = 3 (B) a horizontal asymptote at $y = \frac{1}{3}$ (C) a removable discontinuity at x = 3(D) an infinite discontinuity at x = 3(E) none of these $\lim_{x \to 0} \frac{\sin x}{x^2 + 3x}$ is 5. (A) 1 (B) $\frac{1}{3}$ (C) 3 (D) ∞ (E) $\frac{1}{4}$ **16.** $\lim_{x \to 0} \sin \frac{1}{x}$ is (A) ∞ **(B)** 1 (C) nonexistent (**D**) −1 **(E)** none of these 17. Which statement is true about the curve $y = \frac{2x^2 + 4}{2 + 7x - 4x^2}$? (A) The line $x = -\frac{1}{4}$ is a vertical asymptote. The line x = 1 is a vertical asymptote. **(B)** The line $y = -\frac{1}{4}$ is a horizontal asymptote. (C) The graph has no vertical or horizontal asymptote. (D) **(E)** The line y = 2 is a horizontal asymptote. $\lim_{x \to \infty} \frac{2x^2 + 1}{(2 - x)(2 + x)}$ is 18. (A) -4 **(B)** -2 (**C**) 1 **(D)** 2 **(E)** nonexistent

AP Calculus

19. $\lim_{x \to 0} \frac{|x|}{x}$ is (A) 0 (B) nonexistent (C) 1 **(D)** −1 (E) none of these 20. $\lim_{x\to\infty} x \sin \frac{1}{x}$ is (A) 0 **(B)** ∞ (C) nonexistent **(D)** -1 (E) 1 21. $\lim_{x\to\pi}\frac{\sin(\pi-x)}{\pi-x}$ is (A) 1 (B) 0 (E) none of these (C) ∞ (D) nonexistent 22. Let $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$ Which of the following statements is (are) true? I. $\lim_{x \to 1} f(x)$ exists II. f(1) exists III. *f* is continuous at x = 1(A) I only (B) II only (C) I and II (D) none of them (E) all of them 23. If $\begin{cases} f(x) = \frac{x^2 - x}{2x} & \text{for } x \neq 0, \\ f(0) = k, & \text{for } x \neq 0, \end{cases}$ and if f is continuous at x = 0, then k =(A) -1 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ **(E)** 1 24. Suppose $\begin{cases} f(x) = \frac{3x(x-1)}{x^2 - 3x + 2} \text{ for } x \neq 1, 2, \\ f(1) = -3, \\ f(2) = 4. \end{cases}$ Then f(x) is continuous (A) except at x = 1 (B) except at x = 2 (C) except at x = 1 or 2 (D) except at x = 0, 1, or 2 (E) at each real number 25. The graph of $f(x) = \frac{4}{x^2 - 1}$ has (A) one vertical asymptote, at x = 1

- **(B)** the y-axis as vertical asymptote
- (C) the x-axis as horizontal asymptote and $x = \pm 1$ as vertical asymptotes
- (D) two vertical asymptotes, at $x = \pm 1$, but no horizontal asymptote
- no asymptote (E)

104

26. The graph of
$$y = \frac{2x^2 + 2x + 3}{4x^2 - 4x}$$
 has

- (A) a horizontal asymptote at $y = +\frac{1}{2}$ but no vertical asymptote
- (B) no horizontal asymptote but two vertical asymptotes, at x = 0 and x = 1
- (C) a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at x = 0 and x = 1
- (**D**) a horizontal asymptote at $x = \tilde{2}$ but no vertical asymptote
- (E) a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at $x = \pm 1$

27. Let
$$f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$

Which of the following statements is (are) true?

- I. f(0) exists
- II. $\lim_{x\to 0} f(x)$ exists
- III. f is continuous at x = 0
- (A) I only (B) II only (C) I and II only
- (D) all of them (E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.

28. If [x] is the greatest integer not greater than x, then $\lim_{x \to 1/2} [x]$ is (A) $\frac{1}{2}$ (B) 1 (C) nonexistent (D) 0 (E) none of these

29. (With the same notation) $\lim_{x \to \infty} [x]$ is

(A) -3 (B) -2 (C) -1 (D) 0 (E) none of these

- **30.** $\limsup x$
 - (A) is -1
 (B) is infinity
 (C) oscillates between -1 and 1
 (D) is zero
 (E) does not exist

31. The function
$$f(x) = \begin{cases} x^2/x & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

- (A) is continuous everywhere
- (B) is continuous except at x = 0
- (C) has a removable discontinuity at x = 0
- **(D)** has an infinite discontinuity at x = 0
- (E) has x = 0 as a vertical asymptote