INTRO TO PARTICLE MOTION PRACTICE (No calculator!)

1) A particle travels along the x-axis so that at any time 5) $t \ge 0$, its position is given by $x(t) = t^3 - 9t^2 + 24t + 2$. For what value(s) of t is the velocity equal to zero?

- A) t=4, only
- B) t=2, only
- C) t=0 and t=3
- D) t=3, only
- E) t = 2 and t = 4

2) A particle moves on the x-axis so that its position is given by $x(t) = A - 6t^2 + 8$ for $t \ge 0$. For what times t is the velocity of the particle increasing?

- A) t>0
- B) $0 < t < \sqrt{3}$
- C) $t > \sqrt{3}$
- D) 0 < t < 1
- E) $1 < t < \sqrt{3}$

3) The position of a particle moving on a horizontal axis for time t, where $t \ge 0$, is $S(t) = 3 \sin \frac{1}{2}t + 1$. What is the average velocity of the particle for $0 \le t \le \frac{3\pi}{2}$?

- A) $\frac{\pi}{\sqrt{2}}$
- B) $\frac{\sqrt{2}}{2}$
- C) $\frac{3\sqrt{2}}{2}$
- D) $\frac{\sqrt[n]{2}}{\pi}$
- E) $-\frac{\pi}{\sqrt{2}}$

4) What is the maximum acceleration of a particle on the interval $0 \le t \le 3$ if its position is given by

- $s(t) = t^4 4t^3$?
- A) 36
- B) -16
- C) 0
- D) -12
- E) 24

The table below shows the position of a particle, S, at various times, t, as it moves along a straight line.

t (sec)	1.0	1.4	1.8	2.2	2.6
s (ft)	6.0	7.0	10.0	15.0	21.0

What is an estimated value of the velocity of the particle at time t=2?

- A) 15 ft/sec
- B) 12.5 ft/sec
- C) 20 ft/sec
- D) 10 ft/sec
- E) 5 ft/sec

6) If the position of a particle moving on the x-axis at any time t is given by $x(t) = 2t^3 - 3t^2$, what is the average acceleration of the particle for $0 \le t \le 3$?

- A) 15
- B) 18
- C) 8
- D) 9
- E) 12

7) A particle moves along the x-axis so that at any time $t \ge 0$, its position is given by $x(t) = 2t + \sin(\pi t)$. What is the acceleration of the particle at time

$$t = \frac{3}{2}$$
?

- A) -π²
- B) 2
- **C)** π
- D) π²
- E) 0

- 8) A particle moves along the x-axis so that is position at any time t is given by $x(t) = t^3 6t^2 + 9t + 12$. During what times is the speed of the particle increasing?
 - A) t<1 or 2 < t<3
 - B) 1 < t < 2 or t > 3
 - C) t < 2 or t > 3
 - D) 1 < t < 3
 - E) t < 1 or t > 3
- 9) A particle moves along a coordinate line so that its position is given by $S(t) = 2 \sin \frac{1}{2}t + \frac{1}{2} \cos 2t$ for $0 \le t \le 2\pi$. What is the acceleration of the particle at $t = \pi$?
 - A) $-\frac{3}{2}$
 - B) $-\frac{1}{2}$
 - C) 1
 - D) $-\frac{5}{2}$
 - E) $\frac{5}{2}$
- 10) A particle moves along the x-axis in such a way that its position at any time t is given by $x(t) = A 8t^3 + 18t^2 + 2$ for t > 0. At what time is acceleration of the particle equal to 36?
 - A) 3
 - B) 4
 - C) 12
 - D) 6
 - E) 2
- 11) A particle moves on the x-axis such that its position at any time t > 0 is given by $x(t) = t^3 9t^2 + 24t$. What is the velocity of the particle when its acceleration is zero?
 - A) 105
 - B) 24
 - C) -3
 - D) 3
 - E) 0

- 12) A particle moves along a horizontal axis so that its position is defined by $S(t) = 4 \cos \frac{\pi}{2} t$ for $0 \le t \le 5$. What is the velocity of the particle at the time its acceleration is first equal to zero?
 - A) 2π
 - B) -2π
 - C) -4π
 - D) 4π
 - E) $-\pi^2$
- 13) A particle moves along a horizontal coordinate line so that its position at time t, $0 \le t \le 4$ is given by $S(t) = t^4 \frac{16}{3}t^3 + 8t^2 + 1$. For what times t is the velocity of the particle decreasing?
 - A) $\frac{2}{3} < t < 2$
 - B) $t > \frac{2}{3}$
 - C) 0 < t < 2
 - D) 0 < t < 4
 - E) 2 < t < 4
- 14) The table below shows velocity of a particle at various times tof a particle that moves along a horizontal line.

t (sec)	0.5	1.0	1.5	2.0
v (m/sec)	8.3	9.2	9.8	10.6

What is an approximate value of the acceleration of the particle at time t=2?

- A) 1.2 ft/sec²
- B) -0.8 ft/sec^2
- C) 1.6 ft/sec²
- D) -1.6 ft/sec²
- E) 1.8 ft/sec²