1) A particle travels along the x-axis so that at any time $t \geq 0$, its position is given by $x(t)=t^{3}-9 t^{2}+24 t+2$. For what value(s) of t is the velocity equal to zero?
A) $t=4$, only
B) $t=2$, only
C) $t=0$ and $t=3$
D) $t=3$, only
E) $t=2$ and $t=4$
2) A particle moves on the x-axis so that its position is given by $x(t)=A^{4}-6 t^{2}+8$ for $t \geq 0$. For what times t is the velocity of the particle increasing?
A) $t>0$
B) $0<t<\sqrt{3}$
C) $t>\sqrt{3}$
D) $0<t<1$
E) $1<t<\sqrt{3}$
3) The position of a particle moving on a horizontal axis for time t, where $t \geq 0$, is $S(t)=3 \sin \frac{1}{2} t+1$. What is the average velocity of the particle for $0 \leq t \leq \frac{3 \pi}{2}$?
A) $\frac{\pi}{\sqrt{2}}$
B) $\frac{\sqrt{2}}{\pi}$
C) $\frac{3 \sqrt{2}}{\pi}$
D) $\frac{-\sqrt{2}}{\pi}$
E) $-\frac{\pi}{\sqrt{2}}$
4) What is the maximum acceleration of a particle on the interval $0 \leq t \leq 3$ if its position is given by $s(A)=A-4 A^{3}$?
A) 36
B) -16
C) 0
D) -12
E) 24
5) The table below shows the position of a particle, S, at various times, t, as it moves along a straight line.

$t(\mathrm{sec})$	1.0	1.4	1.8	2.2	2.6
$s(\mathrm{ft})$	6.0	7.0	10.0	15.0	21.0

What is an estimated value of the velocity of the particle at time $t=2$?
A) $15 \mathrm{ft} / \mathrm{sec}$
B) $12.5 \mathrm{ft} / \mathrm{sec}$
C) $20 \mathrm{ft} / \mathrm{sec}$
D) $10 \mathrm{ft} / \mathrm{sec}$
E) $5 \mathrm{ft} / \mathrm{sec}$
6) If the position of a particle moving on the x-axis at any time tis given by $x(t)=2 t^{3}-3 t^{2}$, what is the average acceleration of the particle for $0 \leq t \leq 3$?
A) 15
B) 18
C) 8
D) 9
E) 12
7) A particle moves along the x-axis so that at any time $t \geq 0$, its position is given by $x(t)=2 t+\sin (\pi t)$. What is the acceleration of the particle at time $t=\frac{3}{2}$?
A) $-\pi^{2}$
B) 2
C) π
D) π^{2}
E) 0
8) A particle moves along the x-axis so that is position at any time t is given by $x(t)=t 3-6 t 2+9 t+12$. During what times is the speed of the particle increasing?
A) $t<1$ or $2<t<3$
B) $1<t<2$ or $t>3$
C) $t<2$ or $t>3$
D) $1<t<3$
E) $t<1$ or $t>3$
9) A particle moves along a coordinate line so that its position is given by $S(t)=2 \sin \frac{1}{2} t+\frac{1}{2} \cos 2 t$ for $0 \leq t \leq 2 \pi$. What is the acceleration of the particle at $t=\pi$?
A) $-\frac{3}{2}$
B) $-\frac{1}{2}$
C) 1
D) $-\frac{5}{2}$
E) $\frac{5}{2}$
10) A particle moves along the x-axis in such a way that its position at any time t is given by $x(t)=t^{4}-8 t^{3}+18 t^{2}+2$ for $t>0$. At what time is acceleration of the particle equal to 36 ?
A) 3
B) 4
C) 12
D) 6
E) 2
11) A particle moves on the x-axis such that its position at any time $t>0$ is given by $x(t)=t^{3}-9 t^{2}+24 t$. What is the velocity of the particle when its acceleration is zero?
A) 105
B) 24
C) -3
D) 3
E) 0
12) A particle moves along a horizontal axis so that its position is defined by $S(t)=4 \cos \frac{\pi}{2} t$ for $0 \leq t \leq 5$. What is the velocity of the particle at the time its acceleration is first equal to zero?
A) 2π
B) -2π
C) -4π
D) 4π
E) $-\pi^{2}$
13) A particle moves along a horizontal coordinate line so that its position at time $t, 0 \leq t \leq 4$ is given by $S(t)=t^{4}-\frac{16}{3} t^{3}+8 t^{2}+1$. For what times t is the velocity of the particle decreasing?
A) $\frac{2}{3}<t<2$
B) $t>\frac{2}{3}$
C) $0<t<2$
D) $0<t<4$
E) $2<t<4$
14) The table below shows velocity of a particle at various times tof a particle that moves along a horizontal line.

$t(\mathrm{sec})$	0.5	1.0	1.5	2.0
$v(\mathrm{~m} / \mathrm{sec})$	8.3	9.2	9.8	10.6

What is an approximate value of the acceleration of the particle at time $t=2$?
A) $1.2 \mathrm{ft} / \mathrm{sec}^{2}$
B) $-0.8 \mathrm{ft} / \mathrm{sec}^{2}$
C) $1.6 \mathrm{ft} / \mathrm{sec}^{2}$
D) $-1.6 \mathrm{ft} / \mathrm{sec}^{2}$
E) $1.8 \mathrm{ft} / \mathrm{sec}^{2}$

