Y, mathelaureate.com
 Mathematics Practice Worksheet

Integration
Student Name:
Find the area between the two curves using integration and verify your answer using GDC.

1	$y=-\frac{x^{2}}{2}-2 x+4, \quad y=-x$
2	$y=\sin 2 x, x$ axis \quad between $x=0$ and $x=\pi$
3	$y=-\frac{x^{2}}{2}+5$,
$y=\frac{x}{2}+4$	
$4=x^{2}-x-2, x-$ axis between lines $x=-2$ and $x=4$	

M, mathelaureate.com

$9 \quad y=x^{2}+8 x+14, \quad y=\frac{x^{2}}{2}+2 x-2 \quad$ between the lines $x=-6$ and $x=-2$
$10 y=-x^{3}+7 x^{2}-11 x, \quad y=-x^{2}+4 x$
$11 y=\sqrt{x}, y=3 \sqrt{x}$ between the lines $x=0$ and $x=4$

12
$y=-\frac{x^{2}}{2}+x+\frac{7}{2}, y=\frac{x^{2}}{2}+x-\frac{1}{2} \quad$ between the lines $x=-2$ and $x=3$

13	$y^{2}=x$ and $y=x-2$
14	$y=x^{2}-6 x+9, y=-2 x^{2}+12 x-15$
15	$y=\frac{x^{3}}{2}-3 x, y=\frac{x^{2}}{2}$
16	$y=-2 x^{3}-3 x^{2}+4 x, y=-x^{2}$

Answers

1	$y=-\frac{x^{2}}{2}-2 x+4, \quad y=-x$ Area $=18$ square units.
2	$y=\sin 2 x, x$ axis between $x=0$ and $x=\pi$ Area $=2$ square units.
3	$y=-\frac{x^{2}}{2}+5, \quad y=\frac{x}{2}+4$ Area $=\frac{9}{4}=2.25$ square units.
4	$y=x^{2}-x-2, x-\text { axis between lines } x=-2 \text { and } x=4$ Area $=15$ square units.
5	$y=\frac{x^{3}}{2}+\frac{x^{2}}{2}-2 x, \quad y=x$ Area $=\frac{253}{24}=10.5$ square units.
6	$y=\frac{x^{3}}{2}+\frac{x^{2}}{2}-2 x, \quad y=\frac{x^{2}}{2}$ Area $=4$ square units.
7	$y=-x^{3}-x^{2}+4 x, \quad y=-2 x$ Area $=\frac{253}{12}=21.1$ square units.
8	$y=-2 x^{2}-8 x-4, \quad y=-2 x^{2}-12 x-12$ between the lines $x=-4$ and $x=-1$ Area $=10$ square units.
9	$y=x^{2}+8 x+14, \quad y=\frac{x^{2}}{2}+2 x-2 \quad$ between the lines $x=-6$ and $x=-2$ Area $=8$ square units.
10	$y=-x^{3}+7 x^{2}-11 x, \quad y=-x^{2}+4 x$ Area $=\frac{253}{12}=21.1$ square units.

$11 y=\sqrt{x}, y=3 \sqrt{x}$ between the lines $x=0$ and $x=4$

$$
\text { Area }=\frac{32}{3}=10.7 \text { square units. }
$$

12
$y=-\frac{x^{2}}{2}+x+\frac{7}{2}, y=\frac{x^{2}}{2}+x-\frac{1}{2} \quad$ between the lines $x=-2$ and $x=3$

$$
\text { Area }=13 \text { square units. }
$$

$13 y^{2}=x$ and $y=x-2$
$14 y=x^{2}-6 x+9, y=-2 x^{2}+12 x-15$
Area $=4$ square units.
15
$y=\frac{x^{3}}{2}-3 x, y=\frac{x^{2}}{2}$

$$
\text { Area }=\frac{25}{24}=10.5 \text { square units. }
$$

$16 y=-2 x^{3}-3 x^{2}+4 x, y=-x^{2}$

$$
\text { Area }=\frac{37}{6}=6.17 \text { square units. }
$$

$17 y=-x^{3}-x^{2}+5 x, \quad y=-x$

$$
\text { Area }=\frac{125}{12}=10.4 \text { square units. }
$$

18
$y=-\frac{2}{x^{2}}, \quad y=2 \quad$ between the lines $x=2$ and $x=3$
Area $=\frac{7}{3}=2.33$ square units.
$19 y=-\frac{x^{2}}{2}-x+\frac{9}{2}, \quad y=\frac{x^{2}}{2}-x-\frac{9}{2}$
Area $=36$ square units.
$20 y=\sin 4 x, x$-axis between the lines $x=0$ and $x=\frac{\pi}{4}$

$$
\text { Area }=\frac{1}{2}=0.5 \text { square units. }
$$

