1) Determine where $y = 7x^3 - 4x^2 - 4x^2$	4x + 15 has local maximum or minimum values.	1)
A) local max where $x = -\frac{2}{3}$	B) local max where $x = -\frac{2}{7}$	
local min where $x = \frac{2}{7}$	local min where $x = \frac{2}{3}$	
C) local max where $x = \frac{2}{3}$	D) local max where $x = \frac{2}{7}$	
local min where $x = -\frac{2}{7}$	local min where $x = -\frac{2}{3}$	

2) Find the absolute maximum value of the function $f(x) = -\frac{x^4}{4} + 2x^3 + 8x^2$. 2) _____ Support your answer graphically. A) 8 B) 512 C) -2 D) 12

3) Suppose f'(-1) = 0, f'(x) > 0 to the right of x = -1, and f'(x) > 0 to the left of x = -1. Does f have a relative minimum, a relative maximum, or neither at x = -1? Explain your answer.

3) _____

Do Not Use Calculator

4) For $y = x^4 - 12x^2 + 8$, use analytic methods to find the exact intervals on which the 4) ______ function is (a) concave up (b) concave down. Then (c) find any inflection points. 6) Find the subinterval(s) of $[0, 2\pi]$ on which the graph of cos x is concave up.

 $\begin{array}{c} (0, \frac{\pi}{2}) \cup (\frac{3\pi}{2}, 2\pi) \\ (0, \pi) \end{array} \qquad \qquad \begin{array}{c} B) (\pi, 2\pi) \\ D) (\frac{\pi}{2}, \frac{3\pi}{2}) \end{array}$

7) Let $f(x) = x^4 + ax^2$. What is the value of a if f has a local minimum at x = 5? 7) _____ A) a = -150 B) a = -50 C) a = 50 D) a = 0

8) Use the graph of f'(x) to estimate the interval(s) on which the function f is increasing.
8) ______
Explain your answer.

9) Let $f(x) = x^4 + ax^2$. What is the value of a if f has a point of inflection at x = -6?

9) _____

6) _____

Answer Key Testname: WORKSHEET 4.1, 4.3.TST

1) Answer: B 2) Answer: B 3) Answer: neither 4) Answer: (a) $(-\infty, -\sqrt{2}), (\sqrt{2}, \infty)$ (b) $(-\sqrt{2}, \sqrt{2})$ (c) $(-\sqrt{2}, -12)$ and $(\sqrt{2}, -12)$ 5) Answer: (a) none (b) [2, 3](c) maximum at $(2, e^{-4})$; minimum at $(3, e^{-6})$ 6) Answer: D

- 7) Answer: B
- 8) Answer: (b) The function is increasing when the derivative is greater than zero.
- 9) Answer: a = -216