\qquad

Do Not Use Calculator

1) Determine where $y=7 x^{3}-4 x^{2}-4 x+15$ has local maximum or minimum values.
2) \qquad
A) local max where $x=-\frac{2}{3}$
B) local max where $x=-\frac{2}{7}$
local \min where $\mathrm{x}=\frac{2}{7}$
local min where $\mathrm{x}=\frac{2}{3}$
C) local max where $x=\frac{2}{3}$
D) local max where $x=\frac{2}{7}$
local min where $x=-\frac{2}{7}$
local min where $x=-\frac{2}{3}$
3) Find the absolute maximum value of the function $f(x)=-\frac{x^{4}}{4}+2 x^{3}+8 x^{2}$.
4) \qquad
Support your answer graphically.
A) 8
B) 512
C) -2
D) 12
5) Suppose $f^{\prime}(-1)=0, f^{\prime}(x)>0$ to the right of $x=-1$, and $f^{\prime}(x)>0$ to the left of $x=-1$. Does f have a relative minimum, a relative maximum, or neither at $x=-1$? Explain your answer.

Do Not Use Calculator

4) For $y=x^{4}-12 x^{2}+8$, use analytic methods to find the exact intervals on which the
5) \qquad function is
(a) concave up
(b) concave down.

Then
(c) find any inflection points.
4) \qquad

5) Let $y=e^{-2 x}$ on the domain $[2,3]$. Find the exact intervals on which the function is \qquad
(a) increasing
(b) decreasing

Then
(c) find any local extreme values.
6) Find the subinterval(s) of $[0,2 \pi]$ on which the graph of $\cos x$ is concave up.
6) \qquad
A) ${ }^{\left(0, \frac{\pi}{2}\right) \cup\left(\frac{3 \pi}{2}, 2 \pi\right)}$
B) $(\pi, 2 \pi)$
C) $(0, \pi)$
D) $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
7) Let $\mathrm{f}(x)=\mathrm{x}^{4}+\mathrm{ax}^{2}$. What is the value of a if f has a local minimum at $\mathrm{x}=5$?
7) \qquad
A) $a=-150$
B) $a=-50$
C) $a=50$
D) $a=0$
8) Use the graph of $\mathrm{f}^{\prime}(\mathrm{x})$ to estimate the interval(s) on which the function f is increasing. Explain your answer.

(a) $(-\infty,-3.5] \cup[3.5, \infty)$
(b) $[-3.5,3.5]$
(c) $(-\infty,-2.4] \cup[0,2.4]$
(d) $[-1.41,1.41]$
9) Let $\mathrm{f}(x)=\mathrm{x}^{4}+\mathrm{ax}{ }^{2}$. What is the value of a if f has a point of inflection at $\mathrm{x}=-6$?
8) \qquad

1) Answer: B
2) Answer: B
3) Answer: neither
4) Answer: (a) $(-\infty,-\sqrt{2}),(\sqrt{2}, \infty)$
(b) $(-\sqrt{2}, \sqrt{2})$
(c) $(-\sqrt{2},-12)$ and $(\sqrt{2},-12)$
5) Answer: (a) none
(b) $[2,3]$
(c) maximum at $\left(2, \mathrm{e}^{-4}\right)$; minimum at $\left(3, \mathrm{e}^{-6}\right)$
6) Answer: D
7) Answer: B
8) Answer: (b) The function is increasing when the derivative is greater than zero.
9) Answer: $a=-216$
