AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

All problems are NON CALCULATOR unless otherwise indicated.

1. If $S_{n}=\left(\frac{(5+n)^{100}}{5^{n+1}}\right)\left(\frac{5^{n}}{(4+n)^{100}}\right)$, to what number does the sequence $\left\{S_{n}\right\}$ converge?
A) $\frac{1}{5}$
B) 1
C) $\frac{3}{4}$
D) $\left(\frac{5}{4}\right)^{100}$
E) Does not converge
2. Which of the following series are convergent?
I. $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots$
II. $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$
III. $\quad 1-\frac{1}{3}+\frac{1}{3^{2}}-\cdots+\frac{(-1)^{n+1}}{3^{n-1}}+\cdots$
A) I only
C) I and III
E) I, II, and III
B) III only
D) II and III
3. Which of the following series converge?
I. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$
II. $\sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{3}{2}\right)^{n}$
III. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
A) I only
C) III only
E) I, II, and III
B) II only
D) I and III
4. Which of the following series diverge?
I. $\sum_{k=3}^{\infty} \frac{1}{k^{2}+1}$
II. $\sum_{k=1}^{\infty}\left(\frac{6}{7}\right)^{k}$
III. $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k}$
A) None
C) III only
E) II and III
B) II only
D) I and III

AP Calculus BC
 Chapter SERIES and TAYLOR AP Exam Problems

5. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{n}{n+2}$
II. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
III. $\sum_{n=1}^{\infty} \frac{1}{n}$
A) None
C) III only
E) I and III
B) II only
D) I and II
6. If $\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{d x}{x^{p}}$ is finite, which of the following must be true?
A) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges
B) $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges
C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges
D) $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ converges
E) $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges
7. For what integer $k, k>1$, will both $\sum_{n=2}^{\infty} \frac{(-1)^{k n}}{n}$ and $\sum_{n=1}^{\infty}\left(\frac{k}{4}\right)^{n}$ converge?
A) 6
B) 5
C) 4
D) 3
E) 2
8. For $-1<x<1$ if $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2 n-1}}{2 n-1}$, then $f^{\prime}(x)=$
A) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n-2}$
B) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n-2}$
C) $\sum_{n=1}^{\infty}(-1)^{2 n} x^{2 n}$
D) $\sum_{n=1}^{\infty}(-1)^{n} x^{2 n}$
E) $\sum_{n=1}^{\infty}(-1)^{n+1} x^{2 n}$
9. The coefficient for x^{3} in the Taylor series for $e^{3 x}$ about $x=0$ is
A) $\frac{1}{6}$
B) $\frac{1}{3}$
C) $\frac{1}{2}$
D) $\frac{3}{2}$
E) $\frac{9}{2}$
\qquad

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

10. Which of the following is a series expansion of $\sin (2 x)$?
A) $x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+\frac{(-1)^{n-1} x^{2 n-1}}{(2 n-1)!}+\cdots$
B) $2 x-\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!}-\cdots+\frac{(-1)^{n-1}(2 x)^{2 n-1}}{(2 n-1)!}+\cdots$
C) $-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\cdots+\frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}+\cdots$
D) $\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots+\frac{x^{2 n}}{(2 n)!}+\cdots$
E) $2 x+\frac{(2 x)^{3}}{3!}+\frac{(2 x)^{5}}{5!}+\cdots+\frac{(2 x)^{2 n-1}}{(2 n-1)!}+\cdots$
11. The coefficient of x^{6} in the Taylor series expansion about $x=0$ for $f(x)=\sin \left(x^{2}\right)$ is
A) $-\frac{1}{6}$
B) 0
C) $\frac{1}{120}$
D) $\frac{1}{6}$
E) 1
12. What is the approximation of the value of $\sin 1$ obtained by using the fifth-degree Taylor polynomial about $x=0$ for $\sin x$?
A) $1-\frac{1}{2}+\frac{1}{24}$
B) $1-\frac{1}{2}+\frac{1}{4}$
C) $1-\frac{1}{3}+\frac{1}{5}$
D) $1-\frac{1}{4}+\frac{1}{8}$
E) $1-\frac{1}{6}+\frac{1}{120}$
13. If $\sum_{n=0}^{\infty} a_{n} x^{n}$ is a Taylor series that converges to $f(x)$ for all real x, then $f^{\prime}(1)=$
A) 0
B) a_{1}
C) $\sum_{n=0}^{\infty} a_{n}$
D) $\sum_{n=1}^{\infty} n a_{n}$
E) $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$
14. (CALCULATOR PROBLEM) The graph of the function represented by the Maclaurin series $1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots+\frac{(-1)^{n} x^{n}}{n!}+\cdots$ intersects the graph of $y=x^{3}$ at $x=$
A) 0.773
B) 0.865
C) 0.929
D) 1.000
E) 1.857

AP Calculus BC
 Chapter SERIES and TAYLOR AP Exam Problems

15. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$ converges?
A) $-1 \leq x<1$
B) $-1 \leq x \leq 1$
C) $0<x<2$
D) $0 \leq x<2$
E) $0 \leq x \leq 2$
16. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ converges?
A) $-1 \leq x \leq 1$
C) $-1 \leq x<1$
E) all real x
B) $-1<x \leq 1$
D) $-1<x<1$
17. The interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{3^{n}}$ is
A) $-3<x \leq 3$
B) $-3 \leq x \leq 3$
C) $-2<x<4$
D) $-2 \leq x<4$
E) $0 \leq x \leq 2$
18. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n}}$ converges?
A) $-3<x<-1$
B) $-3 \leq x<-1$
C) $-3 \leq x \leq-1$
D) $-1 \leq x<1$
E) $-1 \leq x \leq 1$
19. (1990 BC5) Let f be the function defined by $f(x)=\frac{1}{x-1}$.
(a) Write the first four terms and the general term of the Taylor series expansion of $f(x)$ about $x=2$.
(b) Use the result from part (a) to find the first four terms and the general term of the series expansion about $x=2$ for $\ln |x-1|$.
(c) Use the series in part (b) to compute a number that differs from $\ln \frac{3}{2}$ by less than 0.05 . Justify your answer.

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

20. (1992 BC6) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{p} \ln n}$, where $p>0$.
(a) Show that the series converges for $p>1$.
(b) Determine whether the series converges or diverges for $p=1$. Show your analysis.
(c) Show that the series diverges for $0 \leq p<1$.
21. (1995 BC 4) Let f be a function that has derivatives of all orders for all real numbers. Assume $f(1)=3, f^{\prime}(1)=-2, f^{\prime \prime}(1)=2$, and $f^{\prime \prime \prime}(1)=4$.
(a) Write the second-degree Taylor polynomial for f about $x=1$ and use it to approximate $f(0.7)$.
(b) Write the third-degree Taylor polynomial for f about $x=1$ and use it to approximate $f(1.2)$.
(c) Write the second-degree Taylor polynomial for f^{\prime}, the derivative of f, about $x=1$ and use it to approximate $f^{\prime}(1.2)$.
22. (1997 BC2) Let $P(x)=7-3(x-4)+5(x-4)^{2}-2(x-4)^{3}+6(x-4)^{4}$ be the fourth-degree

Taylor polynomial for the function f about $x=4$. Assume f has derivatives of all orders for all real numbers.
(a) Find $f(4)$ and $f^{\prime \prime \prime}(4)$.
(b) Write the second-degree Taylor polynomial for f^{\prime} about $x=4$ and use it to approximate $f^{\prime}(4.3)$.
(c) Write the fourth-degree Taylor polynomial for $g(x)=\int_{4}^{x} f(t) d t$ about 4 .
(d) Can $f(3)$ be determined from the information given? Justify your answer.
23. (1998 BC3) Let f be a function that has derivatives of all orders for all real numbers. Assume $f(0)=5, f^{\prime}(0)=-3, f^{\prime \prime}(0)=1$, and $f^{\prime \prime \prime}(0)=4$.
(a) Write the third-degree Taylor polynomial for f about $x=0$ and use it to approximate $f(0.2)$.
(b) Write the fourth-degree Taylor polynomial for g, where $g(x)=f\left(x^{2}\right)$, about $x=0$.
(c) Write the third-degree Taylor polynomial for h, where $h(x)=\int_{0}^{x} f(t) d t$, about $x=0$.
(d) Let h be defined as in part (c). Given that $f(1)=3$, either find the exact value of $h(1)$ or explain why it cannot be determined.

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

24. (1999 BC4) The function f has derivatives of all orders for all real numbers x. Assume that $f(2)=-3, f^{\prime}(2)=5, f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
(a) Write the third-degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
(b) The fourth derivative of f satisfies the inequality $\left|f^{4}(x)\right| \leq 3$ for all x in the closed interval [1.5, 2]. Use the Lagrange error bound on the approximation to $f(1.5)$ found in part (a) to explain why $f(1.5) \neq-5$.
(c) Write the fourth-degree Taylor polynomial, $P(x)$, for $g(x)=f\left(x^{2}+2\right)$ about $x=0$. Use P to explain why g must have a relative minimum at $x=0$.
25. (2001 BC6) A function f is defined by $f(x)=\frac{1}{3}+\frac{2}{3^{2}} x+\frac{3}{3^{3}} x^{2}+\cdots+\frac{n+1}{3^{n+1}} x^{n}+\cdots$ for all x in the interval of convergence of the given power series.
(a) Find the interval of convergence for this power series. Show the work that leads to your answer.
(b) Find $\lim _{x \rightarrow 0} \frac{f(x)-\frac{1}{3}}{x}$.
(c) Write the first three nonzero terms and the general term for an infinite series that represents $\int_{0}^{1} f(x) d x$.
(d) Find the sum of the series determined in part (c).
26. (2002 BC6) The Maclaurin series for the function f is given by

$$
f(x)=\sum_{n=0}^{\infty} \frac{(2 x)^{n+1}}{n+1}=2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\cdots+\frac{(2 x)^{n+1}}{n+1}+\cdots
$$

(a) Find the interval of convergence of the Maclaurin series for f. Justify your answer.
(b) Find the first four terms and the general term of the Maclaurin series for $f^{\prime}(x)$.
(c) Use the Maclaurin series you found in part (b) to find the value of $f^{\prime}\left(-\frac{1}{3}\right)$.

AP Calculus BC
 Chapter SERIES and TAYLOR AP Exam Problems

27. (2002B BC6) The Maclaurin series for $\ln \left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ with interval of convergence $-1 \leq x<1$.
(a) Find the Maclaurin series for $\ln \left(\frac{1}{1+3 x}\right)$ and determine the interval of convergence.
(b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
(c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ diverges. Give reasons why your value of p is correct.
(d) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ converges. Give reasons why your value of p is correct.
28. (2003 BC6) The function f is defined by the power series $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots$ for all real numbers x.
(a) Find $f^{\prime}(0)$ and $f^{\prime \prime}(0)$. Determine whether f has a local maximum, a local minimum, or neither at $x=0$. Give a reason for your answer.
(b) Show that $1-\frac{1}{3!}$ approximates $f(1)$ with error less than $\frac{1}{100}$.
(c) Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}+y=\cos x$.
29. (2003B BC6) The function f has a Taylor series about $x=2$ that converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n+1)!}{3^{n}}$ for $n \geq 1$, and $f(2)=1$.
(a) Write the first four terms and the general term of the Taylor series for f about $x=2$.
(b) Find the radius of convergence for the Taylor series for f about $x=2$. Show the work that leads to your answer.
(c) Let g be a function satisfying $g(2)=3$ and $g^{\prime}(x)=f(x)$ for all x. Write the first four terms and the general tem of the Taylor series for g about $x=2$.
(d) Does the Taylor series for g as defined in part (c) converge at $x=-2$? Give a reason for your answer.

AP Calculus BC
 Chapter SERIES and TAYLOR AP Exam Problems

30. (2004 BC6) Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
(a) Find $P(x)$.
(b) Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
(c) Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$.
(d) Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree

Taylor polynomial for G about $x=0$.
31. (2004B BC2) Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about $x=2$ is given by $T(x)=7-9(x-2)^{2}-3(x-2)^{3}$.
(a) Find $f(2)$ and $f^{\prime \prime}(2)$.
(b) Is there enough information given to determine whether f has a critical point at $x=2$? If not, explain why not. If so, determine whether $f(2)$ is a relative maximum, a relative minimum, or neither, and justify your answer.
(c) Use $T(x)$ to find an approximation for $f(0)$. Is there enough information given to determine whether f has a critical point at $x=0$? If not, explain why not. If so, determine whether $f(0)$ is a relative maximum, a relative minimum, or neither, and justify your answer.
(d) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x in the closed interval [0, 2]. Use the Lagrange error bound on the approximation to $f(0)$ found in part (c) to explain why $f(0)$ is negative.
32. (2005 BC6) Let f by a function with derivatives of all orders and for which $f(2)=7$. When n is odd, the nth derivative of f at $x=2$ is 0 . When n is even and $n \geq 2$, the nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n-1)!}{3^{n}}$.
(a) Write the sixth-degree Taylor polynomial for f about $x=2$.
(b) In the Taylor series for f about $x=2$, what is the coefficient of $(x-2)^{2 n}$ for $n \geq 1$?
(c) Find the interval of convergence of the Taylor series for f about $x=2$. Show the work that leads to your answer.

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

33. (2005B BC3) The Taylor series about $x=0$ for a certain function f converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=0$ is given by $f^{(n)}(0)=\frac{(-1)^{n+1}(n+1)!}{5^{n}(n-1)^{2}}$ for $n \geq 2$. The graph of f has a horizontal tangent line at $x=0$, and $f(0)=6$.
(a) Determine whether f has a relative maximum, a relative minimum, or neither at $x=0$. Justify your answer.
(b) Write the third-degree Taylor polynomial for f about $x=0$.
(c) Find the radius of convergence of the Taylor series for f about $x=0$. Show the work that leads to your answer.
34. (2006 BC6) The function f is defined by the power series: $f(x)=-\frac{x}{2}+\frac{2 x^{2}}{3}-\frac{3 x^{3}}{4}+\cdots+\frac{(-1)^{n} n x^{n}}{n+1}+\cdots$ for all real numbers x for which the series converges. The function g is defined by the power series: $g(x)=1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\cdots+\frac{(-1)^{n} x^{n}}{(2 n)!}+\cdots$ for all real numbers x for which the series converges.
(a) Find the interval of convergence of the power series for f. Justify your answer.
(b) The graph of $y=f(x)-g(x)$ passes through the point $(0,-1)$. Find $y^{\prime}(0)$ and $y^{\prime \prime}(0)$. Determine whether y has a relative minimum, a relative maximum, or neither at $x=0$. Give a reason for your answer.
35. (2006B BC6) The function f is defined by $f(x)=\frac{1}{1+x^{3}}$. The Maclaurin series for f is given by $1-x^{3}+x^{6}-x^{9}+\cdots+(-1)^{n} x^{3 n}+\cdots$, which converges to $f(x)$ for $-1<x<1$.
(a) Find the first three nonzero terms and the general term for the Maclaurin series for $f^{\prime}(x)$.
(b) Use your results fron part (a) to find the sum of the infinite series

$$
-\frac{3}{2^{2}}+\frac{6}{2^{5}}-\frac{9}{2^{8}}+\cdots+(-1)^{n} \frac{3 n}{2^{3 n-1}}+\cdots
$$

(c) Find the first four nonzero terms and the general term for the Maclaurin series representing $\int_{0}^{1 / 2} f(t) d t$.
(d) Use the first three nonzero terms of the infinite series found in part (c) to approximate $\int_{0}^{1 / 2} f(t) d t$. What are the properties of the terms of the series representing $\int_{0}^{1 / 2} f(t) d t$ that guarantee that this approximation is within $\frac{1}{10,000}$ of the exact value of the integral?

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

36. (2007 BC6) Let f be the function given by $f(x)=e^{-x^{2}}$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Use your answer to part (b) to find $\lim _{x \rightarrow 0} \frac{1-x^{2}-f(x)}{x^{4}}$.
(c) Write the first four nonzero terms of the Taylor series for $\int_{0}^{x} e^{-t^{2}} d t$ about $x=0$. Use the first two terms of your answer to estimate $\int_{0}^{1 / 2} e^{-t^{2}} d t$.
(d) Explain why the estimate found in part (c) differs from the actual value of $\int_{0}^{1 / 2} e^{-t^{2}} d t$ by less than $\frac{1}{200}$.
37. (2007B BC6) Let f be the function given by $f(x)=6 e^{-x / 3}$ for all x.
(a) Find the first four nonzero terms and the general term for the Taylor series for f about $x=0$.
(b) Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$. Find the first four nonzero terms and the general term for the Taylor series for g about $x=0$.
(c) The function h satisfies $h(x)=k f^{\prime}(a x)$ for all x, where a and k are constants. The Taylor series for h about $x=0$ is given by $h(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\cdots$. Find the values of a and k.

AP Calculus BC Chapter SERIES and TAYLOR AP Exam Problems

38. (2008 BC3) calculator permited

x	$h(x)$	$h^{\prime}(x)$	$h^{\prime \prime}(x)$	$h^{\prime \prime \prime}(x)$	$h^{(4)}(x)$
1	11	30	42	99	18
2	8	128	$\frac{488}{3}$	$\frac{448}{3}$	$\frac{584}{9}$
3	31	$\frac{753}{2}$	$\frac{1383}{4}$	$\frac{3483}{16}$	$\frac{1125}{16}$

Let h be a function having derivatives of all orders for $x>0$. Selected values of h and its first four derivatives are indicated in the table above. The function h and these four derivatives are increasing on the interval $1 \leq x \leq 3$.
(a) Write the first-degree Taylor polynomial for h about $x=2$ and use it to approximate $h(1.9)$. Is this approximation greater than or less than $h(1.9)$? Explain your reasoning.
(b) Write the third-degree Taylor polynomial for h about $x=2$ and use it to approximate $h(1.9)$.
(c) Use the Lagrange error bound to show that the third-degree Taylor polynomial for h about $x=2$ approximates $h(1.9)$ with error less than 3×10^{-4}.
39. (2008 BC6)

Consider the logistic differential equation $\frac{d y}{d t}=\frac{y}{8}(6-y)$. Let $y=f(t)$ be the particular solution to the differential equation with $f(0)=8$.
(a) A slope field for this differential equation is given below. Sketch possible solution curves through the points $(3,2)$ and $(0,8)$.
(Note: Use the axes provided in the exam booklet.)
(b) Use Euler's method, starting at $t=0$ with two steps of equal size, to approximate $f(1)$.
(c) Write the second-degree Taylor polynomial for f about $t=0$, and use it to approximate $f(1)$.
(d) What is the range of f for $t \geq 0$?

40. (2008B BC6)

Let f be the function given by $f(x)=\frac{2 x}{1+x^{2}}$.
(a) Write the first four nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Does the series found in part (a), when evaluated at $x=1$, converge to $f(1)$? Explain why or why not.
(c) The derivative of $\ln \left(1+x^{2}\right)$ is $\frac{2 x}{1+x^{2}}$. Write the first four nonzero terms of the Taylor series for $\ln \left(1+x^{2}\right)$ about $x=0$.
(d) Use the series found in part (c) to find a rational number A such that $\left|A-\ln \left(\frac{5}{4}\right)\right|<\frac{1}{100}$. Justify your answer.

41. (2009 BC4)

Consider the differential equation $\frac{d y}{d x}=6 x^{2}-x^{2} y$. Let $y=f(x)$ be a particular solution to this differential equation with the initial condition $f(-1)=2$.
(a) Use Euler's method with two steps of equal size, starting at $x=-1$, to approximate $f(0)$. Show the work that leads to your answer.
(b) At the point $(-1,2)$, the value of $\frac{d^{2} y}{d x^{2}}$ is -12 . Find the second-degree Taylor polynomial for f about $x=-1$.
(c) Find the particular solution $y=f(x)$ to the given differential equation with the initial condition $f(-1)=2$.
42. (2009 BC6)

The Maclaurin series for e^{x} is $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}+\cdots$. The continuous function f is defined by $f(x)=\frac{e^{(x-1)^{2}}-1}{(x-1)^{2}}$ for $x \neq 1$ and $f(1)=1$. The function f has derivatives of all orders at $x=1$.
(a) Write the first four nonzero terms and the general term of the Taylor series for $e^{(x-1)^{2}}$ about $x=1$.
(b) Use the Taylor series found in part (a) to write the first four nonzero terms and the general term of the Taylor series for f about $x=1$.
(c) Use the ratio test to find the interval of convergence for the Taylor series found in part (b).
(d) Use the Taylor series for f about $x=1$ to determine whether the graph of f has any points of inflection.

Question 6

The function f is defined by the power series

$$
f(x)=1+(x+1)+(x+1)^{2}+\cdots+(x+1)^{n}+\cdots=\sum_{n=0}^{\infty}(x+1)^{n}
$$

for all real numbers x for which the series converges.
(a) Find the interval of convergence of the power series for f. Justify your answer.
(b) The power series above is the Taylor series for f about $x=-1$. Find the sum of the series for f.
(c) Let g be the function defined by $g(x)=\int_{-1}^{x} f(t) d t$. Find the value of $g\left(-\frac{1}{2}\right)$, if it exists, or explain why $g\left(-\frac{1}{2}\right)$ cannot be determined.
(d) Let h be the function defined by $h(x)=f\left(x^{2}-1\right)$. Find the first three nonzero terms and the general term of the Taylor series for h about $x=0$, and find the value of $h\left(\frac{1}{2}\right)$.
44. (2010 BC6)

$$
f(x)= \begin{cases}\frac{\cos x-1}{x^{2}} & \text { for } x \neq 0 \\ -\frac{1}{2} & \text { for } x=0\end{cases}
$$

The function f, defined above, has derivatives of all orders. Let g be the function defined by $g(x)=1+\int_{0}^{x} f(t) d t$.
(a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Use this series to write the first three nonzero terms and the general term of the Taylor series for f about $x=0$.
(b) Use the Taylor series for f about $x=0$ found in part (a) to determine whether f has a relative maximum, relative minimum, or neither at $x=0$. Give a reason for your answer.
(c) Write the fifth-degree Taylor polynomial for g about $x=0$.
(d) The Taylor series for g about $x=0$, evaluated at $x=1$, is an alternating series with individual terms that decrease in absolute value to 0 . Use the third-degree Taylor polynomial for g about $x=0$ to estimate the value of $g(1)$. Explain why this estimate differs from the actual value of $g(1)$ by less than $\frac{1}{6!}$.
45. (2010B BC6)

Question 6

The Maclaurin series for the function f is given by $f(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n}(2 x)^{n}}{n-1}$ on its interval of convergence.
(a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
(b) Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}-y=\frac{4 x^{2}}{1+2 x}$ for $|x|<R$, where R is the radius of convergence from part (a).
46. (2011 BC6)

Question 6

Let $f(x)=\sin \left(x^{2}\right)+\cos x$. The graph of $y=\left|f^{(5)}(x)\right|$ is shown above.
(a) Write the first four nonzero terms of the Taylor series for $\sin x$ about $x=0$, and write the first four nonzero terms of the Taylor series for $\sin \left(x^{2}\right)$ about $x=0$.
(b) Write the first four nonzero terms of the Taylor series for $\cos x$ about $x=0$. Use this series and the series for $\sin \left(x^{2}\right)$, found in part (a), to write the first four nonzero

Graph of $y=\left|f^{(5)}(x)\right|$ terms of the Taylor series for f about $x=0$.
(c) Find the value of $f^{(6)}(0)$.
(d) Let $P_{4}(x)$ be the fourth-degree Taylor polynomial for f about $x=0$. Using information from the graph of $y=\left|f^{(5)}(x)\right|$ shown above, show that $\left|P_{4}\left(\frac{1}{4}\right)-f\left(\frac{1}{4}\right)\right|<\frac{1}{3000}$.

47. (2011B BC6)

Let $f(x)=\ln \left(1+x^{3}\right)$.
(a) The Maclaurin series for $\ln (1+x)$ is $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \cdot \frac{x^{n}}{n}+\cdots$. Use the series to write the first four nonzero terms and the general term of the Maclaurin series for f.
(b) The radius of convergence of the Maclaurin series for f is 1 . Determine the interval of convergence. Show the work that leads to your answer.
(c) Write the first four nonzero terms of the Maclaurin series for $f^{\prime}\left(t^{2}\right)$. If $g(x)=\int_{0}^{x} f^{\prime}\left(t^{2}\right) d t$, use the first two nonzero terms of the Maclaurin series for g to approximate $g(1)$.
(d) The Maclaurin series for g, evaluated at $x=1$, is a convergent alternating series with individual terms that decrease in absolute value to 0 . Show that your approximation in part (c) must differ from $g(1)$ by less than $\frac{1}{5}$.

48. (2012 BC6)

The function g has derivatives of all orders, and the Maclaurin series for g is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+3}=\frac{x}{3}-\frac{x^{3}}{5}+\frac{x^{5}}{7}-\cdots$.
(a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
(b) The Maclaurin series for g evaluated at $x=\frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0 . The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
(c) Write the first three nonzero terms and the general term of the Maclaurin series for $g^{\prime}(x)$.
49. (2013 BC6)

A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.

Answer Key

1.	A	1993	BC	$\# 31$	46%
2.	C	1985	BC	$\# 14$	82%
3.	A	1988	BC	$\# 44$	35%
4.	A	1993	BC	$\# 16$	57%
5.	B	1998	BC	$\# 18$	35%
6.	A	1998	BC	$\# 22$	68%
7.	D	1998	BC	$\# 76$	60%
8.	A	1985	BC	$\# 10$	49%
9.	E	1985	BC	$\# 42$	64%

10. B	1988	BC	$\# 13$	77%
11.A	1993	BC	$\# 43$	26%
12. E	1998	BC	$\# 14$	68%
13.D	1998	BC	$\# 27$	35%
14.A	1998	BC	$\# 89$	56%
15.D	1985	BC	$\# 31$	53%
16. C	1988	BC	$\# 38$	52%
17.C	1993	BC	$\# 27$	49%
18. B	1998	BC	$\# 84$	40%

