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Chapter 4 : Series & Sequences 
 
Here are a set of practice problems for the Series and Sequences chapter of the Calculus II notes.  If you 
are viewing the pdf version of this document (as opposed to viewing it on the web) this document 
contains only the problems themselves and no solutions are included in this document.  Solutions can be 
found in a couple of places on the site. 
 

1. If you’d like a pdf document containing the solutions the download tab on the website contains 
links to pdf’s containing the solutions for the full book, chapter and section.  At this time, I do 
not offer pdf’s for solutions to individual problems. 
 

2. If you’d like to view the solutions on the web go to the problem set web page, click the solution 
link for any problem and it will take you to the solution to that problem.   

 
Note that some sections will have more problems than others and some will have more or less of a 
variety of problems.  Most sections should have a range of difficulty levels in the problems although this 
will vary from section to section. 
 
Here is a list of all the sections for which practice problems have been written as well as a brief 
description of the material covered in the notes for that particular section. 
 
Sequences – In this section we define just what we mean by sequence in a math class and give the basic 
notation we will use with them.  We will focus on the basic terminology, limits of sequences and 
convergence of sequences in this section.  We will also give many of the basic facts and properties we’ll 
need as we work with sequences. 
 
More on Sequences – In this section we will continued examining sequences.  We will determine if a 
sequence in an increasing sequence or a decreasing sequence and hence if it is a monotonic sequence.  
We will also determine a sequence is bounded below, bounded above and/or bounded. 
 
Series – The Basics – In this section we will formally define an infinite series.  We will also give many of 
the basic facts, properties and ways we can use to manipulate a series.  We will also briefly discuss how 
to determine if an infinite series will converge or diverge (a more in depth discussion of this topic will 
occur in the next section). 
 
Convergence/Divergence of Series – In this section we will discuss in greater detail the convergence and 
divergence of infinite series.  We will illustrate how partial sums are used to determine if an infinite 
series converges or diverges.  We will also give the Divergence Test for series in this section. 
 
Special Series – In this section we will look at three series that either show up regularly or have some 
nice properties that we wish to discuss.  We will examine Geometric Series, Telescoping Series, and 
Harmonic Series. 
 
Integral Test – In this section we will discuss using the Integral Test to determine if an infinite series 
converges or diverges.  The Integral Test can be used on a infinite series provided the terms of the series 
are positive and decreasing.  A proof of the Integral Test is also given. 
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Comparison Test/Limit Comparison Test – In this section we will discuss using the Comparison Test and 
Limit Comparison Tests to determine if an infinite series converges or diverges.  In order to use either 
test the terms of the infinite series must be positive.  Proofs for both tests are also given. 
 
Alternating Series Test – In this section we will discuss using the Alternating Series Test to determine if 
an infinite series converges or diverges.  The Alternating Series Test can be used only if the terms of the 
series alternate in sign.  A proof of the Alternating Series Test is also given. 
 
Absolute Convergence – In this section we will have a brief discussion on absolute convergence and 
conditionally convergent and how they relate to convergence of infinite series. 
 
Ratio Test – In this section we will discuss using the Ratio Test to determine if an infinite series 
converges absolutely or diverges.  The Ratio Test can be used on any series, but unfortunately will not 
always yield a conclusive answer as to whether a series will converge absolutely or diverge.  A proof of 
the Ratio Test is also given. 
 
Root Test – In this section we will discuss using the Root Test to determine if an infinite series converges 
absolutely or diverges.  The Root Test can be used on any series, but unfortunately will not always yield 
a conclusive answer as to whether a series will converge absolutely or diverge.  A proof of the Root Test 
is also given. 
 
Strategy for Series – In this section we give a general set of guidelines for determining which test to use 
in determining if an infinite series will converge or diverge.  Note as well that there really isn’t one set of 
guidelines that will always work and so you always need to be flexible in following this set of guidelines.  
A summary of all the various tests, as well as conditions that must be met to use them, we discussed in 
this chapter are also given in this section. 
 
Estimating the Value of a Series – In this section we will discuss how the Integral Test, Comparison Test, 
Alternating Series Test and the Ratio Test can, on occasion, be used to estimating the value of an infinite 
series. 
 
Power Series – In this section we will give the definition of the power series as well as the definition of 
the radius of convergence and interval of convergence for a power series.  We will also illustrate how 
the Ratio Test and Root Test can be used to determine the radius and interval of convergence for a 
power series. 
 
Power Series and Functions – In this section we discuss how the formula for a convergent Geometric 
Series can be used to represent some functions as power series.  To use the Geometric Series formula, 
the function must be able to be put into a specific form, which is often impossible.  However, use of this 
formula does quickly illustrate how functions can be represented as a power series.  We also discuss 
differentiation and integration of power series. 
 
Taylor Series – In this section we will discuss how to find the Taylor/Maclaurin Series for a function.  This 
will work for a much wider variety of function than the method discussed in the previous section at the 
expense of some often unpleasant work.  We also derive some well known formulas for Taylor series of 

xe , ( )cos x  and ( )sin x  around 0x = . 
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Applications of Series – In this section we will take a quick look at a couple of applications of series.  We 
will illustrate how we can find a series representation for indefinite integrals that cannot be evaluated 
by any other method.  We will also see how we can use the first few terms of a power series to 
approximate a function. 
 
Binomial Series – In this section we will give the Binomial Theorem and illustrate how it can be used to 

quickly expand terms in the form ( )na b+  when n is an integer.  In addition, when n is not an integer an 
extension to the Binomial Theorem can be used to give a power series representation of the term. 
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Section 4-1 : Sequences 
 
For problems 1 & 2 list the first 5 terms of the sequence. 
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For problems 3 – 6 determine if the given sequence converges or diverges.  If it converges what is its 
limit? 
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Section 4-2 : More on Sequences 
 
For each of the following problems determine if the sequence is increasing, decreasing, not monotonic, 
bounded below, bounded above and/or bounded. 
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Section 4-3 : Series - The Basics 
 
For problems 1 – 3 perform an index shift so that the series starts at 3n = . 
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Section 4-4 : Convergence/Divergence of Series 
 
For problems 1 & 2 compute the first 3 terms in the sequence of partial sums for the given series. 
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For problems 3 & 4 assume that the nth term in the sequence of partial sums for the series 
0

n
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=
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given below.  Determine if the series 
0

n
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determine the value of the series. 
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For problems 5 & 6 show that the series is divergent. 
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Section 4-5 : Special Series 
 
For each of the following series determine if the series converges or diverges.  If the series converges 
give its value. 
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Section 4-6 : Integral Test 
 
For each of the following series determine if the series converges or diverges. 
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Section 4-7 : Comparison Test/Limit Comparison Test 
 
For each of the following series determine if the series converges or diverges. 
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Section 4-8 : Alternating Series Test 
 
For each of the following series determine if the series converges or diverges. 
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Section 4-9 : Absolute Convergence 
 
For each of the following series determine if they are absolutely convergent, conditionally convergent or 
divergent. 
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Section 4-10 : Ratio Test 
 
For each of the following series determine if the series converges or diverges. 
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Section 4-11 : Root Test 
 
For each of the following series determine if the series converges or diverges. 
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Section 4-12 : Strategy for Series 
 
Problems have not yet been written for this section. 
 
I was finding it very difficult to come up with a good mix of “new” problems and decided my time was 
better spent writing problems for later sections rather than trying to come up with a sufficient number 
of problems for what is essentially a review section.  I intend to come back at a later date when I have 
more time to devote to this section and add problems then. 
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Section 4-13 : Estimating the Value of a Series 
 

1. Use the Integral Test and 10n =  to estimate the value of 
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Section 4-14 : Power Series 
 
For each of the following power series determine the interval and radius of convergence. 
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Section 4-15 : Power Series and Functions 
 
For problems 1 – 3 write the given function as a power series and give the interval of convergence. 
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4. Give a power series representation for the derivative of the following function. 
 

( ) 5
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1 3

xg x
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5. Give a power series representation for the integral of the following function.  
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Section 4-16 : Taylor Series 
 
For problems 1 & 2 use one of the Taylor Series derived in the notes to determine the Taylor Series for 
the given function. 
 

1. ( ) ( )cos 4f x x=  about 0x =    
 

2. ( ) 36 2xf x x= e  about 0x =    
 
For problem 3 – 6 find the Taylor Series for each of the following functions. 
 

3. ( ) 6xf x −= e   about 4x = −    
 

4. ( ) ( )ln 3 4f x x= +   about 0x =    
 

5. ( ) 4

7f x
x

=  about 3x = −    

 

6. ( ) 27 6 1f x x x= − +  about 2x =    
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Section 4-17 : Applications of Series 
 
1. Determine a Taylor Series about 0x =  for the following integral. 

 
1x

dx
x
−⌠


⌡

e
  

 

2. Write down ( )2T x , ( )3T x  and ( )4T x  for the Taylor Series of ( ) 6xf x −= e   about 4x = − .  Graph all 

three of the Taylor polynomials and ( )f x  on the same graph for the interval [ ]8, 2− − .   
 

3. Write down ( )3T x , ( )4T x  and ( )5T x  for the Taylor Series of ( ) ( )ln 3 4f x x= +   about 0x = .  

Graph all three of the Taylor polynomials and ( )f x  on the same graph for the interval [ ]1
2 , 2− . 
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Section 4-18 : Binomial Series 
 
For problems 1 & 2 use the Binomial Theorem to expand the given function. 
 

1. ( )54 3x+    
 

2. ( )49 x−    
 
For problems 3 and 4 write down the first four terms in the binomial series for the given function.  
 

3. ( ) 61 3x −+    
 
4. 3 8 2x−    
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