Section 4-11 : Root Test

1. Determine if the following series converges or diverges.

$$
\sum_{n=1}^{\infty}\left(\frac{3 n+1}{4-2 n}\right)^{2 n}
$$

Step 1
We'll need to compute L.

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|\left(\frac{3 n+1}{4-2 n}\right)^{2 n}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left|\left(\frac{3 n+1}{4-2 n}\right)^{2}\right|=\left(-\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

Step 2
Okay, we can see that $L=\frac{9}{4}>1$ and so by the Root Test the series diverges.
2. Determine if the following series converges or diverges.

$$
\sum_{n=0}^{\infty} \frac{n^{1-3 n}}{4^{2 n}}
$$

Step 1
We'll need to compute L.

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{n^{1-3 n}}{4^{2 n}}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left|\frac{n^{\frac{1}{n}-3}}{4^{2}}\right|=\left|\frac{n^{\frac{1}{n}} n^{-3}}{4^{2}}\right|=\frac{(1)(0)}{16}=0
$$

Step 2
Okay, we can see that $L=0<1$ and so by the Root Test the series converges.
3. Determine if the following series converges or diverges.

$$
\sum_{n=4}^{\infty} \frac{(-5)^{1+2 n}}{2^{5 n-3}}
$$

Step 1
We'll need to compute L.

$$
L=\lim _{n \rightarrow \infty} n \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|\frac{(-5)^{1+2 n}}{2^{5 n-3}}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left|\frac{(-5)^{\frac{1}{n}+2}}{2^{5-\frac{3}{n}}}\right|=\left|\frac{(-5)^{2}}{2^{5}}\right|=\frac{25}{32}
$$

Step 2
Okay, we can see that $L=\frac{25}{32}<1$ and so by the Root Test the series converges.

