Learn: Product Rule: $f(x)=\square \cdot \Delta \quad \Rightarrow \quad f^{\prime}(x)=\square \cdot d \Delta+\Delta \cdot d \square$
Quotient Rule: $f(x)=\frac{\square}{\Delta} \quad \Rightarrow \quad f^{\prime}(x)=\frac{\Delta \cdot d \square-\square \cdot d \Delta}{\Delta^{2}}$

Find the derivative.

1. $f(x)=\left(x^{3}+x+1\right)\left(x^{4}+x^{2}+1\right)$
2. $y=\left(x^{2}+1\right)\left(x^{3}+1\right)$
3. $y=\frac{x^{2}+5 x-1}{x^{2}}$
4. $g(x)=\frac{(x+1)(x+2)}{(x-1)(x-2)}$

Find the equation for the line tangent to the curve at the given point.
5. $y=\frac{x^{3}+1}{2 x}, x=1$
6. $f(x)=\frac{x^{4}+2}{x^{2}}, x=-1$
7. Find the equation of the line perpendicular to the tangent to the curve $y=x^{3}-3 x+1$ at the point $(2,3)$.
8. Find an equation of the tangent line to the curve $y=\left(x^{3}-3 x+1\right)(x+2)$ when $x=1$.
9. Find the points on the curve $y=2 x^{3}-3 x^{2}-12 x+20$ where the tangent is parallel to the x-axis.

Answers:

1) $f^{\prime}(x)=\left(x^{3}+x+1\right)\left(4 x^{3}+2 x\right)+\left(x^{4}+x^{2}+1\right)\left(3 x^{2}+1\right)$
$f^{\prime}(x)=4 x^{6}+2 x^{4}+4 x^{4}+2 x^{2}+4 x^{3}+2 x+3 x^{6}+x^{4}+3 x^{4}+x^{2}+3 x^{2}+1$
$f^{\prime}(x)=7 x^{6}+10 x^{4}+4 x^{3}+6 x^{2}+2 x+1$
2) $y^{\prime}=\left(x^{2}+1\right)\left(3 x^{2}\right)+\left(x^{3}+1\right)(2 x)$
$y^{\prime}=3 x^{4}+3 x^{2}+2 x^{4}+2 x$
$y^{\prime}=5 x^{4}+3 x^{2}+2 x$
3) $y^{\prime}=\frac{x^{2}(2 x+5)-\left(x^{2}+5 x-1\right)(2 x)}{\left(x^{2}\right)^{2}}$
$y^{\prime}=\frac{2 x^{3}+5 x^{2}-2 x^{3}-10 x^{2}+2 x}{x^{4}}$

$$
y^{\prime}=\frac{-5 x^{2}+2 x}{x^{4}}=\frac{-5 x+2}{x^{3}}
$$

4) $g(x)=\frac{x^{2}+3 x+2}{x^{2}-3 x+2}$
$g^{\prime}(x)=\frac{\left(x^{2}-3 x+2\right)(2 x+3)-\left(x^{2}+3 x+2\right)(2 x-3)}{\left(x^{2}-3 x+2\right)^{2}}$
5)

$$
\begin{aligned}
& y^{\prime}=\frac{2 x\left(3 x^{2}\right)-\left(x^{3}+1\right)(2)}{(2 x)^{2}} \\
& y^{\prime}(1)=\frac{2(3)-(2)(2)}{4}=\frac{1}{2}
\end{aligned}
$$

$g^{\prime}(x)=\frac{2 x^{3}+3 x^{2}-6 x^{2}-9 x+4 x+6-2 x^{3}+3 x^{2}-6 x^{2}+9 x-4 x-6}{\left(x^{2}-3 x+2\right)^{2}}$
6) $\begin{aligned} & f^{\prime}(x)=\frac{x^{2}\left(4 x^{3}\right)-\left(x^{4}+2\right)(2 x)}{\left(x^{2}\right)^{2}} \\ & f^{\prime}(-1)=\frac{1(-4)-(3)(-2)}{1}=2\end{aligned}$
7) $y^{\prime}=3 x^{2}-3$
$y^{\prime}(2)=9$
slope of perpendicular is $-\frac{1}{9}$
$y-3=-\frac{1}{9}(x-2)$
9) parallel to x-axis means slope $=0$

$$
y^{\prime}=\left(x^{3}-3 x+1\right)(1)+(x+2)\left(3 x^{2}-3\right)
$$

$$
\begin{gathered}
y^{\prime}=6 x^{2}-6 x-12=0 \\
x^{2}-x-2=0 \\
(x-2)(x+1)=0 \\
x=2 ; x=-1 \\
y=0 ; \quad y=27 \\
(2,0) \text { and }(-1,27)
\end{gathered}
$$

$$
y^{\prime}(1)=-1+0=-1
$$

$$
y-(-3)=-1(x-1)
$$

