

Name			

Seat # _____ Date ____

Manipulation of power series

Given that

$$h(x) = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots$$
 on $(-1, 1)$,

answer each of the following questions for problems 1 through 6.

- a) Find the first four non-zero terms of the series.
- b) Find a formula for the nth term of the series.
- c) Find the interval of convergence.

1.
$$\frac{1}{1-x}$$

2.
$$\frac{1}{1+x^3}$$

3.
$$\frac{-2}{x^2-1}$$
, given the fact that $\frac{-2}{x^2-1} = \frac{1}{1+x} + \frac{1}{1-x}$

4.
$$-\frac{1}{(x+1)^2}$$
, given the fact that $-\frac{1}{(x+1)^2} = \frac{d}{dx} \left(\frac{1}{1+x}\right)$

5.
$$\frac{2}{(x+1)^3}$$
, given the fact that $\frac{2}{(x+1)^3} = \frac{d^2}{dx^2} \left(\frac{1}{1+x}\right)$

6.
$$\ln(x+1)$$
, given the fact that $\ln(x+1) = \int \frac{1}{1+x} \cdot dx$

7. Use your answer to question #1 and the fact that $\frac{x^2}{1-x} = x^2 \cdot \frac{1}{1-x}$ to find the first four non-zero terms and a formula for the nth term of the power series for $\frac{x^2}{1-x}$

Manipulation of power series

$$h(x) = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \dots$$
 on (-1, 1),

1.
$$\frac{1}{1-x}$$

a)
$$1 + x + x^2 + x^3$$

b)
$$x^n$$

c)
$$(-1, 1)$$

$$2. \qquad \frac{1}{1+x^3}$$

a)
$$1-x^3 + x^6 - x^9$$

b) $(-1)^n x^{3n}$

b)
$$(-1)^n x^{3n}$$

c)
$$(-1, 1)$$

3.
$$\frac{-2}{x^2-1}$$
, given the fact that $\frac{-2}{x^2-1} = \frac{1}{1+x} + \frac{1}{1-x}$

a)
$$2+2x^2+2x^4+2x^6$$

b)
$$2x^{2n}$$

c)
$$(-1, 1)$$

4.
$$-\frac{1}{(x+1)^2}$$
, given the fact that $-\frac{1}{(x+1)^2} = \frac{d}{dx} \left(\frac{1}{1+x}\right)$

a)
$$-1+2x-3x^2+4x^3$$

b)
$$(-1)^n nx^{n-1}$$
 or $(-1)^{n+1}(n+1)x^n$

5.
$$\frac{2}{(x+1)^3}$$
, given the fact that $\frac{2}{(x+1)^3} = \frac{d^2}{dx^2} \left(\frac{1}{1+x}\right)$

a)
$$2-6x+12x^2-20x^3$$

b)
$$(-1)^n n \cdot (n-1)x^{n-2}$$
 or $(-1)^n (n+2) \cdot (n+1)x^n$ or $(-1)^{n+1} n \cdot (n+1)x^{n-1}$

c)
$$(-1, 1)$$

6.
$$\ln(x+1)$$
, given the fact that $\ln(x+1) = \int \frac{1}{1+x} \cdot dx$

a)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$
 (note: $C = 0$, since $\ln((0) + 1) = 0 = C + 0 - 0 + ...$)

b)
$$(-1)^n \frac{x^{n+1}}{n+1}$$
 or $(-1)^{n+1} \frac{x^n}{n}$

7.
$$\frac{x^2}{1-x} = x^2 + x^3 + x^4 + x^5 + \dots + x^{n+2} + \dots$$