Sample Problems

Compute each of the following integrals. Please note that $\arcsin x$ is the same as $\sin ^{-1} x$ and $\arctan x$ is the same as $\tan ^{-1} x$

1. $\int x e^{x} d x$
2. $\int x \cos x d x$
3. $\int x e^{-4 x} d x$
4. $\int \ln x d x$
5. $\int \arcsin x d x$
6. $\int \arctan x d x$
7. $\int e^{x} \sin x d x$
8. $\int \sin ^{2} x d x$
9. $\int \cos ^{2} x d x$
10. $\int \frac{x^{3}}{\left(x^{2}+2\right)^{2}} d x$

Practice Problems

1. $\int x e^{2 x} d x$
2. $\int x^{2} 2^{x} d x$
3. $\int x \sin 10 x d x$
4. $\int x e^{-3 x} d x$
5. $\int x \cos x d x$
6. $\int_{1}^{9} \frac{\ln x}{\sqrt{x}} d x$
7. $\int_{0}^{\ln 2} x e^{-3 x} d x$
8. $\int x^{2} \cos x d x$
9. $\int_{0}^{\infty} x e^{-3 x} d x$
10. $\int x \ln x d x$
11. $\int_{1}^{\infty} \frac{\ln x}{x^{7}} d x$
12. $\int x 2^{x} d x$
13. $\int x^{5} \ln x d x$
14. $\int_{0}^{\pi / 4} x \sin 2 x d x$

Sample Problems - Answers

1.) $x e^{x}-e^{x}+C$
2.) $x \sin x+\cos x+C$
3.) $-\frac{1}{16} e^{-4 x}-\frac{1}{4} x e^{-4 x}+C$
4.) $x \ln x-x+C$
5.) $x \arcsin x+\sqrt{1-x^{2}}+C$
6.) $x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+C$
7.) $\frac{1}{2} e^{x}(\sin x-\cos x)+C$
8.) $\frac{1}{2}(-\sin x \cos x+x)+C$
9.) $\frac{1}{2}(x+\sin x \cos x)+C$
10.) $-e^{-3 x}\left(\frac{1}{3} x^{2}+\frac{2}{9} x+\frac{2}{27}\right)$
11.) $\frac{1}{2} \ln \left(x^{2}+2\right)+\frac{1}{x^{2}+2}+C$

Practice Problems - Answers

1.) $\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}+C$
2.) $-\frac{1}{9} e^{-3 x}-\frac{1}{3} x e^{-3 x}+C$
3.) $\frac{7}{72}-\frac{1}{24} \ln 2$
4.) $\frac{1}{9}$
5.) $\frac{2^{x}}{\ln 2}\left(x-\frac{1}{\ln 2}\right)+C$
6.) $\frac{2^{x}}{\ln 2}\left(x^{2}-\frac{2 x}{\ln 2}+\frac{2}{\ln ^{2} 2}\right)+C$
7.) $x \sin x+\cos x+C$
8.) $x^{2} \sin x+2 x \cos x-2 \sin x+C$
9.) $\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C$
10.) $\frac{1}{6} x^{6} \ln x-\frac{1}{36} x^{6}+C$
11.) $\frac{1}{100} \sin 10 x-\frac{1}{10} x \cos 10 x+C$
12.) $6 \ln 9-8$
13.) $\frac{1}{36}$
14) $\frac{1}{4}$

Sample Problems - Solutions

Please note that $\arcsin x$ is the same as $\sin ^{-1} x$ and $\arctan x$ is the same as $\tan ^{-1} x$.

1. $\int x e^{x} d x$

Solution: We will integrate this by parts, using the formula

$$
\int f^{\prime} g=f g-\int f g^{\prime}
$$

Let $g(x)=x$ and $f^{\prime}(x)=e^{x}$ Then we obtain g^{\prime} and f by differentiation and integration.

$f(x)=e^{x}$	$g(x)=x$
$f^{\prime}(x)=e^{x}$	$g^{\prime}(x)=1$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \text { becomes } \\
\int x e^{x} d x & =x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
\end{aligned}
$$

We should check our result by differentiating the answer. Indeed,

$$
\left(x e^{x}-e^{x}+C\right)^{\prime}=e^{x}+x e^{x}-e^{x}=x e^{x}
$$

and so our answer is correct.
2. $\int x \cos x d x$

Solution: Let $g(x)=x$ and $f^{\prime}(x)=\cos x$ Then we obtain g^{\prime} and f by differentiation and integration.

$$
\begin{array}{|l|l|}
\hline f(x)=\sin x & g(x)=x \\
\hline f^{\prime}(x)=\cos x & g^{\prime}(x)=1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \quad \text { becomes } \\
\int x \cos x d x & =x \sin x-\int \sin x d x=x \sin x-(-\cos x)=x \sin x+\cos x+C
\end{aligned}
$$

We should check our result by differentiating the answer. Indeed,

$$
(x \sin x+\cos x+C)^{\prime}=\sin x+x \cos x-\sin x=x \cos x
$$

and so our answer is correct.
3. $\int x e^{-4 x} d x$

Solution: Let $g(x)=x$ and $f^{\prime}(x)=e^{-4 x}$ Then we obtain g^{\prime} and f by differentiation and integration. To compute $f(x)$, we will use substitution. Let $u=-4 x$ then $d u=-4 d x$ and so $d x=\frac{d u}{-4}$.

$$
f(x)=\int e^{-4 x} d x=\int e^{u} \frac{d u}{-4}=-\frac{1}{4} \int e^{u} d u=-\frac{1}{4} e^{u}+C=-\frac{1}{4} e^{-4 x}+C
$$

We will choose $C=0$ and so $f(x)=-\frac{1}{4} e^{-4 x}$.

$$
\begin{array}{rl}
\hline f(x)=-\frac{1}{4} e^{-4 x} & g(x)=x \\
\hline f^{\prime}(x)=e^{-4 x} & g^{\prime}(x)=1 \\
\int f^{\prime} g & =f g-\int f g^{\prime} \quad \text { becomes } \\
\int x e^{-4 x} d x & =-\frac{1}{4} x e^{-4 x}-\int-\frac{1}{4} e^{-4 x} d x=-\frac{1}{4} x e^{-4 x}+\frac{1}{4} \int e^{-4 x} d x=-\frac{1}{4} x e^{-4 x}+\frac{1}{4}\left(-\frac{1}{4} e^{-4 x}\right)+C \\
& =-\frac{1}{4} x e^{-4 x}-\frac{1}{16} e^{-4 x}+C
\end{array}
$$

We check our result by differentiating the answer.

$$
\begin{aligned}
& \left(-\frac{1}{4} x e^{-4 x}-\frac{1}{16} e^{-4 x}+C\right)^{\prime}= \\
& \quad=-\frac{1}{4}\left(x e^{-4 x}\right)^{\prime}-\frac{1}{16}\left(e^{-4 x}\right)^{\prime}=-\frac{1}{4}\left(e^{-4 x}+x\left(-4 e^{-4 x}\right)\right)-\frac{1}{16}\left(-4 e^{-4 x}\right) \\
& \quad=-\frac{1}{4} e^{-4 x}+x e^{-4 x}+\frac{1}{4} e^{-4 x}=x e^{-4 x}
\end{aligned}
$$

and so our answer is correct.
4. $\int \ln x d x$

Solution: Let $g(x)=\ln x$ and $f^{\prime}(x)=1$ Then we obtain g^{\prime} and f by differentiation and integration. | $f(x)=x$ | $g(x)=\ln x$ |
| :--- | :--- |
| $f^{\prime}(x)=1$ | $g^{\prime}(x)=\frac{1}{x}$ |

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \quad \text { becomes } \\
\int \ln x d x & =x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-\int 1 d x=x \ln x-x+C
\end{aligned}
$$

We check our result by differentiating the answer.

$$
(x \ln x-x+C)^{\prime}=\ln x+x \cdot \frac{1}{x}-1=\ln x
$$

and so our answer is correct.
5. $\int \arcsin x d x$

Solution: Let $g(x)=\arcsin x$ and $f^{\prime}(x)=1$ Then we obtain g^{\prime} and f by differentiation and integration.

$f(x)=x$	$g(x)=\arcsin x$
$f^{\prime}(x)=1$	$g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \text { becomes } \\
\int \arcsin x d x & =x \arcsin x-\int x \cdot \frac{1}{\sqrt{1-x^{2}}} d x=x \arcsin x-\int \frac{x}{\sqrt{1-x^{2}}} d x
\end{aligned}
$$

We compute the integral $\int \frac{x}{\sqrt{1-x^{2}}} d x$ by substitution. Let $u=1-x^{2}$. Then $d u=-2 x d x$ and so $d x=\frac{d u}{-2 x}$.

$$
\begin{aligned}
\int \frac{x}{\sqrt{1-x^{2}}} d x & =\int \frac{x}{\sqrt{u}} \frac{d u}{-2 x}=-\frac{1}{2} \int \frac{1}{\sqrt{u}} d u=-\frac{1}{2} \int u^{-1 / 2} d u \\
& =-\frac{1}{2} \frac{u^{1 / 2}}{\frac{1}{2}}+C=-\sqrt{u}+C=-\sqrt{1-x^{2}}+C
\end{aligned}
$$

Thus the entire integral is

$$
\int \arcsin x d x=x \arcsin x-\left(-\sqrt{1-x^{2}}\right)+C=x \arcsin x+\sqrt{1-x^{2}}+C
$$

We check our result by differentiating the answer.

$$
\begin{aligned}
& \left(x \arcsin x+\sqrt{1-x^{2}}+C\right)^{\prime}= \\
& \quad=(x \arcsin x)^{\prime}+\left(\left(1-x^{2}\right)^{1 / 2}\right)^{\prime}=\arcsin x+x \cdot \frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x) \\
& \quad=\arcsin x+\frac{x}{\sqrt{1-x^{2}}}-\frac{x}{\sqrt{1-x^{2}}}=\arcsin x
\end{aligned}
$$

and so our answer is correct.
6. $\int \arctan x d x$

Solution: Let $g(x)=\arctan x$ and $f^{\prime}(x)=1$ Then we obtain g^{\prime} and f by differentiation and integration.

$$
\begin{array}{|r|l|}
\hline f(x)=x & g(x)=\arctan x \\
\hline f^{\prime}(x)=1 & g^{\prime}(x)=\frac{1}{x^{2}+1} \\
\hline \int f^{\prime} g & =f g-\int f g^{\prime} \quad \text { becomes } \\
& \int \arctan x d x
\end{array}=x \arctan x-\int x \cdot \frac{1}{x^{2}+1} d x=x \arctan x-\int \frac{x}{x^{2}+1} d x
$$

We compute the integral $\int \frac{x}{x^{2}+1} d x$ by substitution. Let $u=x^{2}+1$. Then $d u=2 x d x$ and so $d x=\frac{d u}{2 x}$.

$$
\int \frac{x}{x^{2}+1} d x=\int \frac{x}{u} \frac{d u}{2 x}=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C
$$

Thus the entire integral is

$$
\int \arctan x d x=x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+C
$$

We check our result by differentiating the answer.

$$
\begin{aligned}
& \left(x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+C\right)^{\prime}= \\
& \quad=(x \arctan x)^{\prime}-\frac{1}{2}\left(\ln \left(x^{2}+1\right)\right)^{\prime}=\arctan x+x \cdot \frac{1}{x^{2}+1}-\frac{1}{2} \frac{1}{x^{2}+1}(2 x) \\
& \quad=\arctan x+\frac{x}{x^{2}+1}-\frac{x}{x^{2}+1}=\arctan x
\end{aligned}
$$

so our answer is correct.
7. $\int e^{x} \sin x d x$

Solution: This is an interesting application of integration by parts. Let M denote the integral $\int e^{x} \sin x d x$. Solution: Let $g(x)=\sin x$ and $f^{\prime}(x)=e^{x} \quad$ (Notice that because of the symmetry, $g(x)=e^{x}$ and $f^{\prime}(x)=$ $\sin x$ would also work.) We obtain g^{\prime} and f by differentiation and integration.

$f(x)=e^{x}$	$g(x)=\sin x$
$f^{\prime}(x)=e^{x}$	$g^{\prime}(x)=\cos x$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \quad \text { becomes } \\
\int e^{x} \sin x d x & =e^{x} \sin x-\int e^{x} \cos x d x
\end{aligned}
$$

It looks like our method produced a new integral, $\int e^{x} \cos x d x$ that also requires integration by parts. We proceed: let $g(x)=\cos x$ and $f^{\prime}(x)=e^{x}$. We obtain g^{\prime} and f by differentiation and integration.

$f(x)=e^{x}$	$g(x)=\cos x$
$f^{\prime}(x)=e^{x}$	$g^{\prime}(x)=-\sin x$

$$
\begin{aligned}
& \int f^{\prime} g=f g-\int f g^{\prime} \text { becomes } \\
& \int e^{x} \cos x d x=e^{x} \cos x-\int e^{x}(-\sin x) d x=e^{x} \cos x+\int e^{x} \sin x d x \\
& \text { Thus } \int e^{x} \cos x d x=e^{x} \cos x+\int e^{x} \sin x d x
\end{aligned}
$$

Now the result contains the original integral, $\int e^{x} \sin x$. At this point, it looks like we are getting nowhere because we are going in circles. However, this is not the case. Recall that we denote $\int e^{x} \sin x$ by M. Let us review the computation again:

$$
\begin{aligned}
& \int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x \\
& \int e^{x} \sin x d x=e^{x} \sin x-\left(e^{x} \cos x+\int e^{x} \sin x d x\right) \\
& \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x
\end{aligned}
$$

This is the same as

$$
M=e^{x} \sin x-e^{x} \cos x-M
$$

This is an equation that we can solve for M.

$$
\begin{aligned}
2 M & =e^{x} \sin x-e^{x} \cos x \\
M & =\frac{1}{2} e^{x}(\sin x-\cos x)
\end{aligned}
$$

Thus the answer is $\frac{1}{2} e^{x}(\sin x-\cos x)+C$. We check our result by differentiation.

$$
\begin{aligned}
& \left(\frac{1}{2} e^{x}(\sin x-\cos x)\right)^{\prime}= \\
& \quad=\frac{1}{2}\left(e^{x}\right)^{\prime}(\sin x-\cos x)+\frac{1}{2} e^{x}(\sin x-\cos x)^{\prime}=\frac{1}{2} e^{x}(\sin x-\cos x)+\frac{1}{2} e^{x}(\cos x+\sin x) \\
& \quad=\frac{1}{2} e^{x}(\sin x-\cos x+\sin x+\cos x)=\frac{1}{2} e^{x}(2 \sin x)=e^{x} \sin x
\end{aligned}
$$

so our answer is correct.
8. $\int \sin ^{2} x d x$

Solution: Note that this integral can be easily solved using substitution. This is because of the double angle formula for cosine, $\cos 2 x=1-2 \sin ^{2} x \quad \Longrightarrow \quad \sin ^{2} x=\frac{1-\cos 2 x}{2}$. This solution can be found on our substitution handout. But at the moment, we will use this interesting application of integration by parts as seen in the previous problem.
Let M denote the integral $\int \sin ^{2} x d x$. Let $g(x)=\sin x$ and $f^{\prime}(x)=\sin x$ Then we obtain g^{\prime} and f by differentiation and integration.

$$
\left.\begin{array}{|l}
\hline f(x)=-\cos x \left\lvert\, \begin{array}{l}
g(x)
\end{array}=\sin x\right. \\
\hline f^{\prime}(x)=\sin x \mid g^{\prime}(x)=\cos x \\
\hline \int f^{\prime} g
\end{array}\right)=f g-\int f g^{\prime} \quad \text { becomes } \quad \begin{aligned}
\int \sin ^{2} x d x & =-\sin x \cos x-\int(-\cos x) \cos x d x=-\sin x \cos x+\int \cos ^{2} x d x \\
& =-\sin x \cos x+\int 1-\sin ^{2} x d x=-\sin x \cos x+\int 1 d x-\int \sin ^{2} x d x \\
& =-\sin x \cos x+x-\int \sin ^{2} x d x
\end{aligned}
$$

We obtained

$$
\begin{aligned}
\int \sin ^{2} x d x & =-\sin x \cos x+x-\int \sin ^{2} x d x \quad \text { or } \\
M & =-\sin x \cos x+x-M \quad \text { we solve for } M \\
2 M & =-\sin x \cos x+x \\
M & =\frac{1}{2}(-\sin x \cos x+x)+C
\end{aligned}
$$

So our answer is $\frac{1}{2}(-\sin x \cos x+x)+C$. We check our result by differentiating the answer.

$$
\begin{aligned}
& \left(\frac{1}{2}(-\sin x \cos x+x)+C\right)^{\prime}= \\
& \quad=\left(\frac{1}{2}(-\sin x \cos x+x)+C\right)^{\prime}=\frac{1}{2}(-\sin x(-\sin x)+(-\cos x)(\cos x)+1) \\
& =\frac{1}{2}\left(\sin ^{2} x-\cos ^{2} x+1\right)=\frac{1}{2}(\sin ^{2} x+\underbrace{1-\cos ^{2} x}_{\sin ^{2} x})=\frac{1}{2}\left(2 \sin ^{2} x\right)=\sin ^{2} x
\end{aligned}
$$

so our answer is correct.
9. $\int \cos ^{2} x d x$

Solution: We do not need to integrate by parts (although it is good practice)

$$
\begin{aligned}
\int \cos ^{2} x d x & =\int 1-\sin ^{2} x d x=\int 1 d x-\int \sin ^{2} x d x=x-\frac{1}{2}(-\sin x \cos x+x)+C \\
& =\frac{1}{2} \sin x \cos x+\frac{1}{2} x+C=\frac{1}{2}(x+\sin x \cos x)+C
\end{aligned}
$$

We check our result by differentiating the answer.

$$
\left(\frac{1}{2}(x+\sin x \cos x)+C\right)^{\prime}=\frac{1}{2}\left(1+\cos ^{2} x-\sin ^{2} x\right)=\frac{1}{2}(\underbrace{1-\sin ^{2} x}_{\cos ^{2} x}+\cos ^{2} x)=\frac{1}{2}\left(2 \cos ^{2} x\right)=\cos ^{2} x
$$

so our answer is correct.
10. $\int x^{2} e^{-3 x} d x$

Solution: We will need to integrate by parts twice. First, let $f^{\prime}(x)=e^{-3 x}$ and $g(x)=x^{2}$. Then

$f(x)=-\frac{1}{3} e^{-3 x}$	$g(x)=x^{2}$
$f^{\prime}(x)=e^{-3 x}$	$g^{\prime}(x)=2 x$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \text { becomes } \\
\int x^{2} e^{-3 x} d x & =-\frac{1}{3} e^{-3 x}\left(x^{2}\right)-\int\left(-\frac{1}{3} e^{-3 x}\right) 2 x d x=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3} \int x e^{-3 x} d x
\end{aligned}
$$

and we can compute $\int x e^{-3 x} d x$ by integrating by parts. Let $f^{\prime}(x)=e^{-3 x}$ and $g(x)=x$. Then

$f(x)=-\frac{1}{3} e^{-3 x}$	$g(x)=x$
$f^{\prime}(x)=e^{-3 x}$	$g^{\prime}(x)=1$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \text { becomes } \\
\int x e^{-3 x} d x & =-\frac{1}{3} e^{-3 x}(x)-\int\left(-\frac{1}{3} e^{-3 x}\right) d x=-\frac{1}{3} x e^{-3 x}+\frac{1}{3} \int e^{-3 x} d x \\
& =-\frac{1}{3} x e^{-3 x}+\frac{1}{3}\left(-\frac{1}{3} e^{-3 x}\right)+C=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}+C
\end{aligned}
$$

This is the result we need to compute the integral $\int x^{2} e^{-3 x} d x$. So far we had this much:

$$
\int x^{2} e^{-3 x} d x=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3} \int x e^{-3 x} d x
$$

to this we substitute our result $\int x e^{-3 x} d x=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}+C$:

$$
\begin{aligned}
\int x^{2} e^{-3 x} d x & =-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3} \int x e^{-3 x} d x=-\frac{1}{3} x^{2} e^{-3 x}+\frac{2}{3}\left(-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}+C_{1}\right) \\
& =-\frac{1}{3} x^{2} e^{-3 x}-\frac{2}{9} x e^{-3 x}-\frac{2}{27} e^{-3 x}+C
\end{aligned}
$$

Our result might look nicer if we factor out $-e^{-3 x}$ or $-\frac{1}{27} e^{-3 x}$. Then the final answer is $-e^{-3 x}\left(\frac{1}{3} x^{2}+\frac{2}{9} x+\frac{2}{27}\right)+C$ or $-\frac{1}{27} e^{-3 x}\left(9 x^{2}+6 x+2\right)+C$.
We check via differentiation:

$$
\begin{aligned}
f^{\prime}(x) & =\left(-\frac{1}{27} e^{-3 x}\left(9 x^{2}+6 x+2\right)\right)^{\prime}=-\frac{1}{27}\left(-3 e^{-3 x}\left(9 x^{2}+6 x+2\right)+e^{-3 x}(18 x+6)\right) \\
& =-\frac{1}{27}\left(e^{-3 x}\left(-27 x^{2}-18 x-6\right)+e^{-3 x}(18 x+6)\right) \\
& =-\frac{1}{27} e^{-3 x}\left(-27 x^{2}-18 x-6+18 x+6\right)=x^{2} e^{-3 x}
\end{aligned}
$$

and so our solution is correct.
11. $\int \frac{x^{3}}{\left(x^{2}+2\right)^{2}} d x$

Solution: this integral can be computed using at least three different methods: substitution (try $u=x^{2}+2$) or partial fractions or integration by parts. We will present integration by parts here.
First, let $f^{\prime}(x)=\frac{x}{\left(x^{2}+2\right)^{2}}$ and $g(x)=x^{2}$. To compute f, we need to integrate $\frac{x}{\left(x^{2}+2\right)^{2}}$. We can do that by using substitution: Let $u=x^{2}+2$. Then $d u=2 x d x$ and so $d x=\frac{d u}{2 x}$. So

$$
\int \frac{x}{\left(x^{2}+2\right)^{2}} d x=\int \frac{x}{u^{2}} \frac{d u}{2 x}=\frac{1}{2} \int \frac{1}{u^{2}} d u=\frac{1}{2}\left(-\frac{1}{u}\right)+C=-\frac{1}{2\left(x^{2}+2\right)}+C
$$

Thus if $f^{\prime}(x)=\frac{x}{\left(x^{2}+2\right)^{2}}$, then $f(x)=-\frac{1}{2\left(x^{2}+2\right)}$. Proceeding with the integration by parts, we write

$$
\begin{array}{|l|l|}
\hline f(x)=-\frac{1}{2\left(x^{2}+2\right)} & g(x)=x^{2} \\
\hline f^{\prime}(x)=\frac{x}{\left(x^{2}+2\right)^{2}} & g^{\prime}(x)=2 x \\
\hline
\end{array}
$$

$$
\begin{aligned}
\int f^{\prime} g & =f g-\int f g^{\prime} \text { becomes } \\
\int \frac{x}{\left(x^{2}+2\right)^{2}}\left(x^{2}\right) d x & =-\frac{1}{2\left(x^{2}+2\right)}\left(x^{2}\right)-\int-\frac{1}{2\left(x^{2}+2\right)}(2 x) d x \\
& =-\frac{x^{2}}{2\left(x^{2}+2\right)}+\int \frac{x}{x^{2}+2} d x
\end{aligned}
$$

and this second integral can be computed using the same substitution:
Let $w=x^{2}+2$. Then $d w=2 x d x$ and so $d x=\frac{d w}{2 x}$

$$
\int \frac{x}{x^{2}+2} d x=\int \frac{x}{w} \frac{d w}{2 d x}=\frac{1}{2} \int \frac{1}{w} d w=\frac{1}{2} \ln |w|+C=\frac{1}{2} \ln \left(x^{2}+2\right)+C
$$

and so the entire integral is then

$$
\int \frac{x^{3}}{\left(x^{2}+2\right)^{2}} d x=-\frac{x^{2}}{2\left(x^{2}+2\right)}+\int \frac{x}{x^{2}+2} d x=-\frac{x^{2}}{2\left(x^{2}+2\right)}+\frac{1}{2} \ln \left(x^{2}+2\right)+C
$$

We check via differentiation:

$$
\begin{aligned}
f^{\prime}(x) & =\left(-\frac{x^{2}}{2\left(x^{2}+2\right)}+\frac{1}{2} \ln \left(x^{2}+2\right)+C\right)^{\prime} \\
& =-\frac{1}{2}\left(\frac{2 x\left(x^{2}+2\right)-x^{2}(2 x)}{\left(x^{2}+2\right)^{2}}\right)+\frac{1}{2} \frac{1}{x^{2}+2}(2 x) \\
& =-\left(\frac{x\left(x^{2}+2\right)-x^{3}}{\left(x^{2}+2\right)^{2}}\right)+\frac{x}{x^{2}+2}=-\left(\frac{x^{3}+2 x-x^{3}}{\left(x^{2}+2\right)^{2}}\right)+\frac{x}{x^{2}+2} \\
& =-\frac{2 x}{\left(x^{2}+2\right)^{2}}+\frac{x\left(x^{2}+2\right)}{\left(x^{2}+2\right)^{2}}=\frac{-2 x+x^{3}+2 x}{\left(x^{2}+2\right)^{2}}=\frac{x^{3}}{\left(x^{2}+2\right)^{2}}
\end{aligned}
$$

and so our solution is correct.
For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.

