Calculus	Name	ID: 1
AP CALC WEEK 3 HW	Date	Period
Solve each related rate problem.		
1) A conical paper cup is 30 cm tall with a radius o	f 10 cm. The cup is being filled with	

water at a rate of $\frac{9\pi}{4}$ cm³/sec. How fast is the water level rising when the water level is 9 cm?

2) A spherical snowball is rolled in fresh snow, causing it grow at a rate of 36π in³/sec. How fast is the radius of the snowball increasing when the radius is 8 in?

3) Water leaking onto a floor forms a circular pool. The area of the pool increases at a rate of 9π cm²/min. How fast is the radius of the pool increasing when the radius is 6 cm?

Answers to AP CALC WEEK 3 HW (ID: 1)

1)
$$V = \text{volume of material in cone} \quad h = \text{height} \quad t = \text{time}$$

Equation: $V = \frac{\pi h^3}{27}$ Given rate: $\frac{dV}{dt} = \frac{9\pi}{4}$ Find: $\frac{dh}{dt}\Big|_{h=9}$
 $\frac{dh}{dt}\Big|_{h=9} = \frac{9}{\pi h^2} \cdot \frac{dV}{dt} = \frac{1}{4} \text{ cm/sec}$
2) $V = \text{volume of sphere} \quad r = \text{radius} \quad t = \text{time}$
Equation: $V = \frac{4}{3}\pi r^3$ Given rate: $\frac{dV}{dt} = 36\pi$ Find: $\frac{dr}{dt}\Big|_{r=8}$
 $\frac{dr}{dt}\Big|_{r=8} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt} = \frac{9}{64} \text{ in/sec}$
3) $A = \text{area of circle} \quad r = \text{radius} \quad t = \text{time}$
Equation: $A = \pi r^2$ Given rate: $\frac{dA}{dt} = 9\pi$ Find: $\frac{dr}{dt}\Big|_{r=6}$
 $\frac{dr}{dt}\Big|_{r=6} = \frac{1}{2\pi r} \cdot \frac{dA}{dt} = \frac{3}{4} \text{ cm/min}$