Day 4 Homework

Use your calculator on problems 10 and 13c only.

1. If $x=t^{2}-1$ and $y=e^{t^{3}}$, find $\frac{d y}{d x}$.
2. If a particle moves in the $x y$-plane so that at any time $t>0$, its position vector is $\left\langle\ln \left(t^{2}+5 t\right), 3 t^{2}\right\rangle$, find its velocity vector at time $t=2$.
3. A particle moves in the $x y$-plane so that at any time t, its coordinates are given by $x=t^{5}-1$ and $y=3 t^{4}-2 t^{3}$. Find its acceleration vector at $t=1$.
4. If a particle moves in the $x y$-plane so that at time t its position vector is $\left\langle\sin \left(3 t-\frac{\pi}{2}\right), 3 t^{2}\right\rangle$, find the velocity vector at time $t=\frac{\pi}{2}$.
5. A particle moves on the curve $y=\ln x$ so that its x-component has derivative $x^{\prime}(t)=t+1$ for $t \geq 0$. At time $t=0$, the particle is at the point $(1,0)$. Find the position of the particle at time $t=1$.
6. A particle moves in the $x y$-plane in such a way that its velocity vector is $\left\langle 1+t, t^{3}\right\rangle$. If the position vector at $t=0$ is $\langle 5,0\rangle$, find the position of the particle at $t=2$.
7. A particle moves along the curve $x y=10$. If $x=2$ and $\frac{d y}{d t}=3$, what is the value of $\frac{d x}{d t}$?
8. The position of a particle moving in the $x y$-plane is given by the parametric equations $x=t^{3}-\frac{3}{2} t^{2}-18 t+5$ and $y=t^{3}-6 t^{2}+9 t+4$. For what value(s) of t is the particle at rest?
9. A curve C is defined by the parametric equations $x=t^{3}$ and $y=t^{2}-5 t+2$. Write the equation of the line tangent to the graph of C at the point $(8,-4)$.
10. A particle moves in the $x y$-plane so that the position of the particle is given by $x(t)=5 t+3 \sin t$ and $y(t)=(8-t)(1-\cos t)$. Find the velocity vector at the time when the particle's horizontal position is $x=25$.
11. The position of a particle at any time $t \geq 0$ is given by $x(t)=t^{2}-3$ and $y(t)=\frac{2}{3} t^{3}$.
(a) Find the magnitude of the velocity vector at time $t=5$.
(b) Find the total distance traveled by the particle from $t=0$ to $t=5$.
(c) Find $\frac{d y}{d x}$ as a function of x.
12. Point $P(x, y)$ moves in the $x y$-plane in such a way that $\frac{d x}{d t}=\frac{1}{t+1}$ and $\frac{d y}{d t}=2 t$ for $t \geq 0$.
(a) Find the coordinates of P in terms of t given that, when $t=1, x=\ln 2$ and $y=0$.
(b) Write an equation expressing y in terms of x.
(c) Find the average rate of change of y with respect to x as t varies from 0 to 4 .
(d) Find the instantaneous rate of change of y with respect to x when $t=1$.
13. Consider the curve C given by the parametric equations $x=2-3 \cos t$ and $y=3+2 \sin t$, for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.
(a) Find $\frac{d y}{d x}$ as a function of t.
(b) Find the equation of the tangent line at the point where $t=\frac{\pi}{4}$.
(c) The curve C intersects the y-axis twice. Approximate the length of the curve between the two y-intercepts.

Answers to Day 4 Homework

1. $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left[e^{t^{3}}\right]}{\frac{d}{d t}\left[t^{2}-1\right]}=\frac{3 t^{2} e^{t^{3}}}{2 t}=\frac{3 t e^{t^{3}}}{2}$.
2. $v(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\left\langle\frac{2 t+5}{t^{2}+5 t}, 6 t\right\rangle$ so $v(2)=\left\langle\frac{9}{14}, 12\right\rangle$.
3. $v(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\left\langle 5 t^{4}, 12 t^{3}-6 t^{2}\right\rangle$.
$a(t)=\left\langle\frac{d^{2} x}{d t^{2}}, \frac{d^{2} y}{d t^{2}}\right\rangle=\left\langle 20 t^{3}, 36 t^{2}-12 t\right\rangle$, so $\mathrm{a}(1)=\langle 20,24\rangle$.
4. $v(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\left\langle 3 \cos \left(3 t-\frac{\pi}{2}\right), 6 t\right\rangle$ so $v\left(\frac{\pi}{2}\right)=\langle 3 \cos \pi, 3 \pi\rangle=\langle-3,3 \pi\rangle$.
5. $x(t)=\int(t+1) d t=\frac{t^{2}}{2}+t+C$.
$x(0)=1=C$ so $x(t)=\frac{t^{2}}{2}+t+1$.
Since $x(1)=\frac{5}{2}$ and $y(1)=\ln \left(\frac{5}{2}\right)$, Position $=\left(\frac{5}{2}, \ln \left(\frac{5}{2}\right)\right)$.
Or, since $x(1)=1+\int_{0}^{1}(t+1) d t=\frac{5}{2}$ and $y(1)=\ln \left(\frac{5}{2}\right)$, Position $=\left(\frac{5}{2}, \ln \left(\frac{5}{2}\right)\right.$.
6. $x(t)=\int(1+t) d t=t+\frac{t^{2}}{2}+C . x(0)=5$ so $C=5$ and $x(t)=t+\frac{t^{2}}{2}+5$.
$y(t)=\int t^{3} d t=\frac{t^{4}}{4}+D . y(0)=0$ so $D=0$ and $y(t)=\frac{t^{4}}{4}$.
Position vector $=\left\langle t+\frac{t^{2}}{2}+5, \frac{t^{4}}{4}\right\rangle$. At $t=2$, Position $=(9,4)$.
Or, since $x(2)=5+\int_{0}^{2}(1+t) d t=9$ and $y(2)=0+\int_{0}^{2} t^{3} d t=4$,
Position $=(9,4)$.
7. When $x=2, y=5$.
$x \frac{d y}{d t}+y \frac{d x}{d t}=0$
$(2)(3)+5 \frac{d x}{d t}=0$ so $\frac{d x}{d t}=-\frac{6}{5}$
Or find that $\frac{d y}{d x}=-\frac{10}{x^{2}}$. Then substituting into $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$ gives $\frac{-10}{4}=\frac{3}{\frac{d x}{d t}}$ so that
$\frac{d x}{d t}=-\frac{6}{5}$. $\frac{d x}{d t}=-\frac{6}{5}$.
8. $x^{\prime}(t)=3 t^{2}-3 t-18=3(t-3)(t+2)=0$ when $t=3$ and $t=-2$.
$y^{\prime}(t)=3 t^{2}-12 t+9=3(t-1)(t-3)=0$ when $t=3$ and $t=1$.
The particle is at rest when $v(t)=\langle 0,0\rangle$ so at rest when $t=3$.
9. $t^{3}=8 \quad t^{2}-5 t+2=-4$
$t=2 \quad t^{2}-5 t+6=0$

$$
(t-3)(t-2)=0
$$

$$
t=3, t=2
$$

At $(8,-4)$ when $t=2$

$$
\left.\frac{d y}{d x}\right|_{t=2}=\left.\frac{2 t-5}{3 t^{2}}\right|_{t=2}=-\frac{1}{12}
$$

Tangent line equation: $y+4=-\frac{1}{12}(x-8)$
10. $5 t+3 \sin t=25$ when $t=5.445755 \ldots$

$$
\begin{aligned}
& v(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle=\langle 5+3 \cos t,-1+\cos t+(8-t) \sin t\rangle \\
& v(5.445755 \ldots)=\langle 7.008,-2.228\rangle
\end{aligned}
$$

11. (a) Magnitude when $t=5$ is $\left.\sqrt{(2 t)^{2}+\left(2 t^{2}\right)^{2}}\right|_{t=5}=\sqrt{2600}$ or $10 \sqrt{26}$
(b)

Distance $=\int_{0}^{5} \sqrt{(2 t)^{2}+\left(2 t^{2}\right)^{2}} d t=\int_{0}^{5} 2 t \sqrt{1+t^{2}} d t=\left.\frac{2}{3}\left(1+t^{2}\right)^{\frac{3}{2}}\right|_{0} ^{5}=\frac{2}{3}\left(26^{\frac{3}{2}}-1\right)$
(c) $\frac{d y}{d x}=\frac{2 t^{2}}{2 t}=t=\sqrt{x+3}$
12. (a) $x(t)=\int \frac{1}{t+1} d t=\ln (t+1)+C$. When $t=1, x=\ln 2$ so $C=0$.

$$
\begin{aligned}
& x(t)=\ln (t+1) \\
& y(t)=\int 2 t d t=t^{2}+D . \text { When } t=1, y=0 \text { so } D=-1 . \\
& y(t)=t^{2}-1 \\
& (x, y)=\left(\ln (t+1), t^{2}-1\right)
\end{aligned}
$$

(b) $t+1=e^{x}$ so $t=e^{x}-1$ and $y=\left(e^{x}-1\right)^{2}-1=e^{2 x}-2 e^{x}$.
(c) Average rate of change $=\frac{y(b)-y(a)}{x(b)-x(a)}=\frac{y(4)-y(0)}{x(4)-x(0)}=\frac{15-(-1)}{\ln 5-\ln 1}=\frac{16}{\ln 5}$
(d) Instantaneous rate of change $=\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{2 t}{\frac{1}{t+1}}\right|_{t=1}=4$
13. (a) $\frac{d y}{d x}=\frac{2 \cos t}{3 \sin t}=\frac{2}{3} \cot t$
(b) $y-(3+\sqrt{2})=\frac{2}{3}\left(x-\left(2-\frac{3 \sqrt{2}}{2}\right)\right)$
(c) $x=0$ when $t=-0.84106867 \ldots, 0.84106867 \ldots$

$$
\text { length }=\int_{-0.841 \ldots, . .}^{0.841 \ldots} \sqrt{(3 \sin t)^{2}+(2 \cos t)^{2}} d t=3.756 \text { or } 3.757
$$

