\qquad

AP Calculus BC

Summer Review Packet (Limits \& Derivatives)

Limits

1. Answer the following questions using the graph of $f(x)$ given below.

(a) Find $f(0)$
(b) Find $f(3)$
(c) Find $\lim _{x \rightarrow-5} f(x)$
(d) Find $\lim _{x \rightarrow 0^{+}} f(x)$
(e) Find $\lim _{x \rightarrow 3^{-}} f(x)$
(f) Find $\lim _{x \rightarrow-3^{+}} f(x)$
(g) List all x-values for which $f(x)$ has a removable discontinuity. Explain what section(s) of the definition of continuity is (are) violated at these points.
(h) List all x-values for which $f(x)$ has a nonremovable discontinuity. Explain what section(s) of the definition of continuity is (are) violated at these points.

In problems 2-10, find the limit (if it exists) using analytic methods (i.e. without using a calculator).
2. $\lim _{x \rightarrow-2} \frac{3 x^{2}+21 x+30}{x^{3}+8}$
3. $\lim _{x \rightarrow \pi / 6} \frac{1-\cos ^{2} x}{4 x}$
4. $\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-1}{x-4}$
5. $\lim _{x \rightarrow 0} \frac{[1 /(x+1)]-1}{x}$
6. $\lim _{x \rightarrow 0} \frac{[1 / \sqrt{1+x}]-1}{x}$
7. $\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta^{3}}{7 \theta}$
8. $\lim _{t \rightarrow 0} \frac{\sin ^{2} 3 t^{2}}{t^{3}}$
9. $\lim _{x \rightarrow 6^{-}} \frac{|6 x-36|}{6-x}$
10. $\lim _{\Delta x \rightarrow 0} \frac{\sin ((\pi / 6)+\Delta x)-(1 / 2)}{\Delta x}$

Hint: $\quad \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
11. Suppose $f(x)=\left\{\begin{array}{c}\frac{\sqrt{2 x+1}-\sqrt{3}}{x-1}, x \geq 0 \\ 4 x^{2}+k, x<0\end{array}\right.$.
(a) For what value of k will f be piecewise continuous at $x=0$? Explain why this is true using one-sided limits. (Hint: A function is continuous at

$$
\left.\boldsymbol{x}=\boldsymbol{c} \text { if (1) } \mathbf{f} \mathbf{f} \mathbf{c} \text { exists, (2) } \lim _{x \rightarrow c} f(x) \text { exists, and (3) } \lim _{x \rightarrow c} f(x)=f(c) .\right)
$$

(b) Using the value of k that you found in part (a), accurately graph f below.

Approximate the value of $\lim _{x \rightarrow 1} f(x)$
$\lim _{x \rightarrow 1} f(x)=$ \qquad

(c) Rationalize the numerator to find $\lim _{x \rightarrow 1} f(x)$ analytically.
12. Analytically determine the values of b and c such that the function f is continuous on the entire real number line. See the hint given in problem 11.

$$
f(x)=\left\{\begin{array}{c}
x+1,1<x<3 \\
x^{2}+b x+c, x<1 \text { or } x>3
\end{array}\right.
$$

In problem 13, circle the correct answer and explain why the answer is the correct one.
13. If $f(x)=x^{3}+x-3$, and if c is the only real number such that $f(c)=0$, then by the Intermediate Value Theorem, c is necessarily between
(A) -2 and -1
(B) -1 and 0
(C) 0 and 1
(D) 1 and 2
(E) 2 and 3

Hint: The Intermediate Value Theorem states that if f is a continuous function on the interval $[\mathrm{a}, \mathrm{b}]$ and k is any number between $f(a)$ and $f(b)$, then there must exist at least one number $c \in[a, b]$ such that $f(c)=\boldsymbol{k}$.

Derivatives

In problems 1 \& 2, find the derivative of the function by using the limit definition of the derivative.

1. $f(x)=x^{3}-2 x+3$
2. $f(x)=\frac{x+1}{x-1}$

In problems 3-14, find the derivative of the given function using the power, product, quotient, and/or chain rules.
3. $f(x)=\left(3 x^{2}+7\right)\left(x^{2}-2 x+3\right)$
4. $f(x)=\sqrt{x} \sin x$
5. $f(t)=t^{3} \cos t$
6. $f(x)=\frac{x^{2}+x-1}{x^{2}-1}$
7. $f(x)=\frac{x^{4}+x}{\tan ^{2} x}$
8. $f(x)=3 x^{2} \sec ^{3} x$
9. $f(x)=3 x \csc x+x \cot x$
10. $f(x)=\left(\frac{x+5}{x^{2}-6 x}\right)^{2}$
11. $f(x)=\left(x^{3}-2\right)^{3 / 2}\left(5 x^{2}+1\right)^{5 / 2}$
12. $f(x)=x^{3} \cot ^{4}(7 x)$
13. $f(x)=5 \sin ^{2}\left(\sqrt{3 x^{4}+1}\right)$

Problems continue on the next page.

In problems 14 \& 15, find an equation of the tangent line to the graph of f at the indicated point P.
14. $f(x)=\frac{1+\cos x}{1-\cos x}, P\left(\frac{\pi}{2}, 1\right)$
15. $f(x)=\left(x^{2}-1\right)^{2 / 3}, P(3,4)$

In problems 16 \& 17, find the second derivative of the given function.
16. $f(x)=\left(4 x^{2}-3 x\right)^{3 / 2}$
17. $h(x)=x^{3} \cos (\pi x)$

In problem 18, use the position function $s(t)=-16 t^{2}+v_{0} t+s_{0}$ for free-falling objects.
18. A ball is thrown straight down from the top of a 220 -foot tall building with an initial velocity of -22 feet per second.
(a) Determine the average velocity of the ball on the interval [1, 2].
(b) Determine the instantaneous velocity of the ball at $t=3$.
(c) Determine the time t at which the average velocity on [0,2] equals the instantaneous velocity.
(d) What is the velocity of the ball when it strikes the ground?

In problem 19-24, circle the correct answer and explain why the answer is the correct one.
19. $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}\right)}{h}=$
(A) Does not exist
(B) $\frac{1}{2}$
(C) $-\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
(E) $\quad-\frac{\sqrt{3}}{2}$
20. Let f and g be differentiable functions with values for $f(x), g(x), f^{\prime}(x)$, and $g^{\prime}(x)$ shown below for $x=1$ and $x=2$.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{g}^{\boldsymbol{\prime}}(\boldsymbol{x})$
1	4	-4	12	-8
2	5	1	-6	4

Find the value of the derivative of $f(x) \bullet g(x)$ at $x=1$.
(A) -96
(B) $\quad-80$
(C) -48
(D) -32
(E) 0
21. Let $f(x)=\left\{\begin{array}{l}3 x^{2}+4, x<1 \\ x^{3}+3 x, x \geq 1\end{array}\right.$. Which of the following is true?
I. $f(x)$ is continuous at $x=1$
II. $f(x)$ is differentiable at $x=1$
III. $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only
22. The equation of the line tangent to the curve $f(x)=\frac{k x+8}{k+x}$ at $x=-2$ is $y=x+4$. What is the value of k ?
(A) -3
(B) -1
(C) 1
(D) 3
(E) 4
23. An equation of the line normal to the curve $y=\sqrt[3]{x^{2}-1}$ at the point where $x=3$ is
(A) $y+12 x=38$
(B) $y-4 x=10$
(C) $y+2 x=4$
(D) $y+2 x=8$
(E) $y-2 x=-4$

Hint: A normal line to a curve at a point is perpendicular to the tangent line to the curve at the same point.
24. If the nth derivative of y is denoted as $y^{(n)}$ and $y=-\sin x$, then $y^{(14)}$ is the same as
(A) y
(B) $\frac{d y}{d x}$
(C) $\frac{d^{2} y}{d x^{2}}$
(D) $\frac{d^{3} y}{d x^{3}}$
(E) None of the above

Answers

Limits:

1. (a) -1
(b) 2
(c) 0
(d) -1
(e) 1
(f) $+\infty$
(g) $x=-5,5$
(h) $\quad x=-3,0,3$
2. $3 / 4$
3. $3 /(8 \pi)$
4. $1 / 2$
5. -1
6. $-1 / 2$
7. 0
8. 0
9. 6
10. $\frac{\sqrt{3}}{2}$
11. (a) $k=-1+\sqrt{3}$
(b) $\approx .577$
(c) $\frac{1}{\sqrt{3}}$
12. $b=-3, c=4$
13. D

Derivatives:

1. $f^{\prime}(x)=3 x^{2}-2$
2. $f^{\prime}(x)=\frac{-2}{(x-1)^{2}}$
3. $f^{\prime}(x)=12 x^{3}-18 x^{2}+32 x-14$
4. $f^{\prime}(x)=\sqrt{x} \cos x+\frac{\sin x}{2 \sqrt{x}}$
5. $f^{\prime}(t)=-t^{3} \sin t+3 t^{2} \cos t$
6. $f^{\prime}(x)=\frac{-x^{2}-1}{\left(x^{2}-1\right)^{2}}$
7. $f^{\prime}(x)=\frac{4 x^{3} \tan x+\tan x-2 x^{4} \sec ^{2} x-2 x \sec ^{2} x}{\tan ^{3} x}$
8. $f^{\prime}(x)=9 x^{2} \sec ^{3} x \tan x+6 x \sec ^{3} x$
9. $f^{\prime}(x)=-3 x \csc x \cot x+3 \csc x-x \csc ^{2} x+\cot x$
10. $f^{\prime}(x)=\frac{(2 x+10)\left(-x^{2}-10 x+30\right)}{\left(x^{2}-6 x\right)^{3}}$
11. $f^{\prime}(x)=25 x\left(\left(x^{3}-2\right)\left(5 x^{2}+1\right)\right)^{3 / 2}+\frac{9}{2} x^{2}\left(5 x^{2}+1\right)^{5 / 2}\left(x^{3}-2\right)^{1 / 2}$
12. $f^{\prime}(x)=-28 x^{3} \cot ^{3}(7 x) \csc ^{2}(7 x)+3 x^{2} \cot ^{4}(7 x)$
13. $f^{\prime}(x)=\frac{60 x^{3} \sin \sqrt{3 x^{4}+1} \cos \sqrt{3 x^{4}+1}}{\sqrt{3 x^{4}+1}}$
14. $y-1=-2\left(x-\frac{\pi}{2}\right)$
15. $y-4=2(x-3)$
16. $f^{\prime}(x)=12 \sqrt{4 x^{3}-3 x}+\frac{3(8 x-3)^{2}}{4 \sqrt{4 x^{2}-3 x}}$
17. $h^{\prime}(x)=-\pi^{2} x^{3} \cos \pi x-6 \pi x^{2} \sin \pi x+6 x \cos \pi x$
18. (a) $-70 \mathrm{ft} / \mathrm{s}$.
(b) $-118 \mathrm{ft} . / \mathrm{s}$.
(c) $t=1 \mathrm{~s}$.
(d) $\approx-120.688 \mathrm{ft} / \mathrm{s}$.
19. C
20. B
21. B
22. D
23. D
24. C
