
Name___

AP Calculus BC Summer Review Packet (Limits & Derivatives)

<u>Limits</u>

1. Answer the following questions using the graph of f(x) given below.

(g) List all x-values for which f(x) has a removable discontinuity. Explain what section(s) of the definition of continuity is (are) violated at these points.

(h) List all x-values for which f(x) has a nonremovable discontinuity. Explain what section(s) of the definition of continuity is (are) violated at these points.

In problems 2-10, find the limit (if it exists) using analytic methods (i.e. without using a calculator).

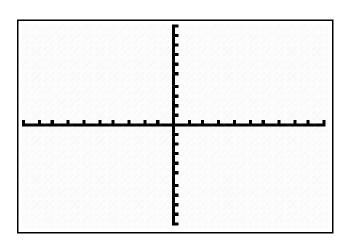
2.	$\lim \frac{3x^2 + 21x + 30}{3x^2 + 21x + 30}$	3	$\lim \frac{1-\cos^2 x}{x}$
	$\lim_{x \to -2} \frac{1}{x^3 + 8}$	5.	$x \rightarrow \pi/6$ 4x

4.
$$\lim_{x \to 4} \frac{\sqrt{x-3}-1}{x-4}$$
 5. $\lim_{x \to 0} \frac{[1/(x+1)]-1}{x}$

6.
$$\lim_{x \to 0} \frac{\left[1/\sqrt{1+x}\right] - 1}{x}$$
 7.
$$\lim_{\theta \to 0} \frac{\sin 6\theta^3}{7\theta}$$

8.
$$\lim_{t \to 0} \frac{\sin^2 3t^2}{t^3}$$
 9. $\lim_{x \to 6^-} \frac{|6x - 36|}{6 - x}$

$$10. \qquad \lim_{\Delta x \to 0} \frac{\sin((\pi/6) + \Delta x) - (1/2)}{\Delta x}$$


Hint: $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

11. Suppose
$$f(x) = \begin{cases} \frac{\sqrt{2x+1}-\sqrt{3}}{x-1}, & x \ge 0\\ 4x^2+k, & x < 0 \end{cases}$$
.

(a) For what value of k will f be piecewise continuous at x = 0? Explain why this is true using one-sided limits. (Hint: A function is continuous at

x = c if (1) f(c) exists, (2) $\lim_{x \to c} f(x)$ exists, and (3) $\lim_{x \to c} f(x) = f(c)$.)

(b) Using the value of k that you found in part (a), **accurately** graph f below. Approximate the value of $\lim_{x\to 1} f(x)$

 $\lim_{x \to 1} f(x) = \underline{\qquad}$

(c) Rationalize the numerator to find $\lim_{x\to 1} f(x)$ analytically.

12. Analytically determine the values of *b* and *c* such that the function *f* is continuous on the entire real number line. **See the hint given in problem 11.**

$$f(x) = \begin{cases} x+1, 1 < x < 3\\ x^2 + bx + c, x < 1 \text{ or } x > 3 \end{cases}$$

In problem 13, circle the correct answer and explain why the answer is the correct one.

- **13.** If $f(x) = x^3 + x 3$, and if *c* is the only real number such that f(c) = 0, then by the Intermediate Value Theorem, *c* is necessarily between
 - (A) -2 and -1
 - (B) -1 and 0
 - (C) 0 and 1
 - (D) 1 and 2
 - (E) 2 and 3

Hint: The Intermediate Value Theorem states that if f is a continuous function on the interval [a, b] and k is any number between f(a) and f(b), then there must exist at least one number $c \in [a, b]$ such that f(c) = k.

Derivatives

In problems 1 & 2, find the derivative of the function by using the limit definition of the derivative.

1.
$$f(x) = x^3 - 2x + 3$$
 2. $f(x) = \frac{x+1}{x-1}$

In problems 3-14, find the derivative of the given function using the power, product, quotient, and/or chain rules.

3.
$$f(x) = (3x^2 + 7)(x^2 - 2x + 3)$$

4. $f(x) = \sqrt{x} \sin x$
5. $f(t) = t^3 \cos t$
6. $f(x) = \frac{x^2 + x - 1}{x^2 - 1}$

7.
$$f(x) = \frac{x^4 + x}{\tan^2 x}$$
 8. $f(x) = 3x^2 \sec^3 x$

9.
$$f(x) = 3x \csc x + x \cot x$$
 10. $f(x) = \left(\frac{x+5}{x^2-6x}\right)^2$

11.
$$f(x) = (x^3 - 2)^{3/2} (5x^2 + 1)^{5/2}$$
 12. $f(x) = x^3 \cot^4(7x)$

13.
$$f(x) = 5\sin^2(\sqrt{3x^4 + 1})$$

_

Problems continue on the next page.

In problems 14 & 15, find an equation of the tangent line to the graph of *f* at the indicated point *P*.

14.
$$f(x) = \frac{1 + \cos x}{1 - \cos x}, P\left(\frac{\pi}{2}, 1\right)$$
 15. $f(x) = \left(x^2 - 1\right)^{2/3}, P(3, 4)$

In problems 16 & 17, find the second derivative of the given function.

16.
$$f(x) = (4x^2 - 3x)^{3/2}$$
 17. $h(x) = x^3 \cos(\pi x)$

In problem 18, use the position function $s(t) = -16t^2 + v_0t + s_0$ for free-falling objects.

- **18.** A ball is thrown straight down from the top of a 220-foot tall building with an initial velocity of -22 feet per second.
 - (a) Determine the average velocity of the ball on the interval [1, 2].

(b) Determine the instantaneous velocity of the ball at t = 3.

(c) Determine the time *t* at which the average velocity on [0, 2] equals the instantaneous velocity.

(d) What is the velocity of the ball when it strikes the ground?

In problem 19-24, circle the correct answer and explain why the answer is the correct one.

$$19. \qquad \lim_{h \to 0} \frac{\cos\left(\frac{\pi}{6} + h\right) - \cos\left(\frac{\pi}{6}\right)}{h} =$$

- (A) Does not exist
- (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$
- (D) $\frac{\sqrt{3}}{2}$ (E) $-\frac{\sqrt{3}}{2}$

20.	Let f and g be differentiable functions with values for $f(x)$, $g(x)$, $f'(x)$, and $g'(x)$ shown
	below for $x = 1$ and $x = 2$.

X	<i>f(x)</i>	g(x)	f'(x)	g'(x)
1	4	-4	12	-8
2	5	1	-6	4

Find the value of the derivative of $f(x) \bullet g(x)$ at x = 1.

- (A) -96
- (B) -80
- (C) -48
- (D) -32
- (E) 0

21. Let
$$f(x) = \begin{cases} 3x^2 + 4, x < 1 \\ x^3 + 3x, x \ge 1 \end{cases}$$
. Which of the following is true?

- I. f(x) is continuous at x = 1
- II. f(x) is differentiable at x = 1

III.
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

- **22.** The equation of the line tangent to the curve $f(x) = \frac{kx+8}{k+x}$ at x = -2 is y = x + 4. What is the value of k?
 - (A) -3
 - (B) -1
 - (C) 1
 - (D) 3
 - (E) 4

23. An equation of the line <u>normal</u> to the curve $y = \sqrt[3]{x^2 - 1}$ at the point where x = 3 is

- (A) y + 12x = 38
- (B) y 4x = 10
- (C) y + 2x = 4
- (D) y + 2x = 8
- (E) y 2x = -4

Hint: A <u>normal line</u> to a curve at a point is perpendicular to the tangent line to the curve at the same point.

- **24.** If the nth derivative of y is denoted as $y^{(n)}$ and $y = -\sin x$, then $y^{(14)}$ is the same as
 - (A) *y*

(B)
$$\frac{dy}{dx}$$

(C)
$$\frac{d^2 y}{dx^2}$$

(D)
$$\frac{d^3y}{dx^3}$$

(E) None of the above

Answers

<u>Limits</u>:

1.	(a)	-1
	(b)	2
	(c)	0
	(d)	-1
	(e)	1
	(f)	+∞
	(g)	<i>x</i> = -5, 5
	(h)	<i>x</i> = -3, 0, 3
2.	3/4	
3.	3/(8π)	
4.	1/2	
5.	-1	
6.	-1/2	
7.	0	
8.	0	
9.	6	
10.	$\frac{\sqrt{3}}{2}$	

11. (a) $k = -1 + \sqrt{3}$ (b) $\approx .577$ (c) $\frac{1}{\sqrt{3}}$ **12.** b = -3, c = 4**13.** D

Derivatives:

1. $f'(x) = 3x^2 - 2$ 2. $f'(x) = \frac{-2}{(x-1)^2}$

$$f'(x) = 12x^3 - 18x^2 + 32x - 14$$

$$4. \qquad f'(x) = \sqrt{x}\cos x + \frac{\sin x}{2\sqrt{x}}$$

5.
$$f'(t) = -t^3 \sin t + 3t^2 \cos t$$

6.
$$f'(x) = \frac{-x^2 - 1}{(x^2 - 1)^2}$$

7.
$$f'(x) = \frac{4x^3 \tan x + \tan x - 2x^4 \sec^2 x - 2x \sec^2 x}{\tan^3 x}$$

8.
$$f'(x) = 9x^2 \sec^3 x \tan x + 6x \sec^3 x$$

9.
$$f'(x) = -3x \csc x \cot x + 3 \csc x - x \csc^2 x + \cot x$$

10.
$$f'(x) = \frac{(2x+10)(-x^2-10x+30)}{(x^2-6x)^3}$$

11.
$$f'(x) = 25x((x^3-2)(5x^2+1))^{3/2} + \frac{9}{2}x^2(5x^2+1)^{5/2}(x^3-2)^{1/2}$$

12.
$$f'(x) = -28x^3 \cot^3(7x) \csc^2(7x) + 3x^2 \cot^4(7x)$$

13.
$$f'(x) = \frac{60x^3 \sin \sqrt{3x^4 + 1} \cos \sqrt{3x^4 + 1}}{\sqrt{3x^4 + 1}}$$

14.
$$y-1=-2(x-\frac{\pi}{2})$$

15.
$$y-4=2(x-3)$$

16.
$$f'(x) = 12\sqrt{4x^3 - 3x} + \frac{3(8x - 3)^2}{4\sqrt{4x^2 - 3x}}$$

17.
$$h'(x) = -\pi^2 x^3 \cos \pi x - 6\pi x^2 \sin \pi x + 6x \cos \pi x$$

(c)
$$t = 1$$
 s.

(d)
$$\approx -120.688$$
 ft./s.

19. C

- 20. B
- 21. B
- 22. D
- 23. D
- 24. C