WINTER BREAK AP Practice

Name ______ PER ____ DATE _____

- 1. Find dy/dx for $y = 2\sqrt{x} \frac{1}{2\sqrt{x}}$

- a. $x + \frac{1}{x\sqrt{x}}$ b. $x^{-\frac{1}{2}} + x^{\frac{-3}{2}}$ c. $\frac{4x-1}{4x\sqrt{x}}$ d. $\frac{1}{\sqrt{x}} + \frac{1}{4x\sqrt{x}}$ e. $\frac{4}{\sqrt{x}} + \frac{1}{x\sqrt{x}}$

- 2. The maximum value of the function $y = -4\sqrt{2-x}$ is
- a. 0
- b. -4 c. 2

- d. -2 e. none of these
- 3. It follows from the graph of f'(x) shown below at the right, that
 - a. f(x) is not continuous at x = a
 - b. f(x) is continuous but not differentiable
 - c. f(x) has a relative max at x = a
 - d. f(x) has a point of inflection at x = a
 - e. none of these

Questions 4 - 9 are based on the function *f* shown in the graph and defined below:

$$f(x) = \begin{cases} 1 - x & (-1 \le x < 0) \\ 2x^2 - 2 & (0 \le x \le 1) \\ -x + 2 & (1 < x < 2) \\ 1 & (x = 2) \\ 2x - 2 & (2 < x \le 3) \end{cases}$$

- 4. $\lim_{x\to 2} f(x)$
 - a. equals 0

- c. equals 2
- e. none of these

- b. equals 1
- d. does not exist
- 5. The function f is definied on [-1, 3]

d. If
$$x \neq 3$$

b. If
$$x \neq 1$$

- a. x = 0
- c. x = 2
- e. none of these

b.
$$x = 1$$
 d. $x = 3$

d.
$$x = 3$$

7. On which of the following intervals is *f* continuous?

$$a = 1 < r < 0$$

$$h \ 0 < r < 1$$

c.
$$1 \le x \le 2$$

d.
$$2 \le x \le 3$$

- a. $-1 \le x \le 0$ b. 0 < x < 1 c. $1 \le x \le 2$ d. $2 \le x \le 3$ e. none of these
- 8. The function *f* has a jump discontinuity at

a
$$x = -1$$

b.
$$x = 1$$

c.
$$x = 2$$

d.
$$x = 3$$

a.
$$x = -1$$
 b. $x = 1$ c. $x = 2$ d. $x = 3$ e. none of these

9. A differentiable function f has the values shown. Estimate f'(1.5).

x	1.0	1.2	1.4	1.6
f(x)	8	10	14	22

- a. 8
- b. 12
- c. 18
- d. 40
- e. 80

10. From the values show in the table below, estimate f'(2).

	х	1.92	1.94	1.96	1.98	2.00
	f(x)	6.00	5.00	4.40	4.10	4.00
-0	0.10	b0.20	c5		d10	e25

- a. -0.10
- b. -0.20

- 11. $\lim_{x\to 0} \frac{\sin 2x}{x}$ is
 - a. 1
- b. 2
- d. 0
- e. ∞

- 12. $\lim_{x\to 0} \frac{\tan \pi x}{x}$ is
 - a. $\frac{1}{\pi}$
 - b. 0
 - c. 1
 - d. π
 - e. ∞

Use the graph shown for questions 13-29. It shows the velocity of an object moving along a straight

line during the time interval $0 \le t \le 5$.

- c. 2

d. 3

- c. (0,2)
- e. (3,5)

a. (0,1)

15. The acceleration of the object is positive during the time interval

a.
$$(0,1)$$

c.
$$(0,2)$$

16. how many times on
$$0 < t < 5$$
 is the object's acceleration undefined?

- a. None
- b. 1
- c. 2
- d. 3
- e. more than 3

17. During 2 < t < 3 the object's acceleration (in ft/sec²) is

- a. -10
- b. −5
- c. 0
- d. 5
- e. 10

6.) The graph of f', the derivative of f, is shown in the figure below. Which of the following describes all relative extrema of f on the open interval (a, b)?

- (A) One relative maximum and two relative minima
- (B) Two relative maxima and one relative minimum
- (C) Three relative maxima and one relative minimum
- (D) One relative maximum and three relative minima
- (E) Two relative maxima and two relative minima

FRQ Practice 1

10.) Suppose that the function f has a continuous second derivative for all x, and that f(0) = 2, f'(0) = -3, and f''(0) = 0. Let g be the function whose derivative is given by $g'(x) = e^{-2x} (3f(x) + 2f'(x))$ for all x.

- a.) Write an equation of the line tangent to the graph of f at the point where x=0.
- b.) Is there sufficient information to determine whether or not the graph of f has a point of inflection when x = 0? Explain your answer.
- c.) Given that g(0) = 4, write an equation of the line tangent to the graph of g at the point where x = 0.
- d.) Show that $g''(x) = e^{-2x} (-6f(x) f'(x) + 2f''(x))$.

FRQ Practice 2

Let h be a function defined for all $x \neq 0$ such that h(4) = -3 and the derivative of h is given by $h'(x) = \frac{x^2 - 2}{x}$ for all $x \neq 0$.

- (a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
- (b) On what intervals, if any, is the graph of h concave up? Justify your answer.
- (c) Write an equation for the line tangent to the graph of h at x = 4.
- (d) Does the line tangent to the graph of h at x=4 lie above or below the graph of h for x>4? Why?