For \#1-3

a) Find and classify the critical point(s).
b) Find the interval(s) where $f(x)$ is increasing.
c) Find the interval(s) where $f(x)$ is decreasing.

1. $f(x)=x^{2}-x-1$
2. $f(x)=2 x^{4}-4 x^{2}+1$
3. $f(x)=x e^{1 / x}$

For \# 4-6

a) Find the x-coordinate of the point(s) of inflection.
b) Find the interval(s) where $f(x)$ is concave up.
c) Find the interval(s) where $f(x)$ is concave down.
4. $f(x)=4 x^{3}+21 x^{2}+36 x-20$
5. $f(x)=2 x^{1 / 5}+3$
6. $f(x)=-x^{4}+4 x^{3}-4 x+1$

For \#7-10, find all points of inflection of the function. Justify your answer.

7. $y=x e^{x}$	8. $f(x)=\tan ^{-1} x$
9. $f(x)=x^{1 / 3}(x-4)$	10. $y=\frac{x^{3}-2 x^{2}+x-1}{x-2}$

Free Response Question

Let f be a function defined on the closed interval $-5 \leq x \leq 5$ with $f(1)=3$. The graph of f^{\prime}, the derivative of f, consists of two semicircles and two line segments, as shown above.
(a) For $-5<x<5$, find all values of x at which f has a relative maximum. Justify your answer.
(b) For $-5<x<5$, find all values of x at which f has a point of inflection. Justify your answer.
(c) Find all intervals on which the graph of f (not shown) is concave up. Justify your answer.
(d) Find all intervals on which the graph of f (not shown) has a positive slope. Justify your answer.

Answers:

	Relative Min f^{\prime} changes from - to +	Relative Max f^{\prime} changes from + to -	Increasing $f^{\prime}>0$	Decreasing $f^{\prime}<0$
1.	$\left(\frac{1}{2},-\frac{5}{4}\right)$	None	$\left(\frac{1}{2}, \infty\right)$	$\left(-\infty, \frac{1}{2}\right)$
2.	$(-1,-1)$ and $(1,-1)$	$(0,1)$	$(-1,0)$ and $(1, \infty)$	$(-\infty,-1)$ and $(0,1)$
$\mathbf{3}$	$(1, e)$	None	$(-\infty, 0)$ and $(1, \infty)$	$(0,1)$

	x-coordinate of point of inflection $f^{\prime \prime}$ changes signs	Concave Up $f^{\prime \prime}>0$	Concave Down $f^{\prime \prime}<0$
4.	$x=-\frac{7}{4}$	$\left(-\frac{7}{4}, \infty\right)$	$\left(-\infty,-\frac{7}{4}\right)$
$\mathbf{5 .}$	$x=0$	$(-\infty, 0)$	$(0, \infty)$
$\mathbf{6 .}$	$x=0$ and $x=2$	$(0,2)$	$(-\infty, 2)$ and $(2, \infty)$

7. $\left(-2,-\frac{2}{e^{2}}\right)$
8. $(0,0)$
9. $(0,0)$ and $(-2,6 \sqrt[3]{2})$
10. $(1,1)$

Free Response Question:
a) f has a relative maximum at $x=-3$ and $x=4$ because $f^{\prime}(x)$ changes signs from positive to negative.
b) f has a point of inflection at $x=-1$ and $x=2$ because $f^{\prime \prime}$ changes signs
c) f is concave up on $(-5,-4)$ and $(-1,2)$ because f^{\prime} is increasing or $f^{\prime \prime}>0$
d) f has a positive slope on $(-5,-3)$ and $(1,4)$ because $f^{\prime}>0$.

