2.4 Going Off on a Tangent

For the following five problems, find an equation for the tangent line to the curve at the given x-coordinate.

387.
$$y = 4 - x^2$$
; $x = -1$

388.
$$y = 2\sqrt{x}; \quad x = 1$$

389. $y = x - 2x^2; \quad x = 1$

390.
$$y = x^{-3}; \quad x = -2$$

391. $y = x^3 + 3x; \quad x = 1$

392. At what points does the graph of $y = x^2 + 4x - 1$ have a horizontal tangent?

393. Find an equation for the tangent to the curve $y = \sqrt{x}$ that has slope $\frac{1}{4}$.

394. What is the instantaneous rate of change of the area of a circle when the radius is 3 cm?

395. What is the instantaneous rate of change of the volume of a ball when the radius is 2 cm?

396. Does the graph of $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$ have a tangent at the origin? Justify your answer.

- **397.** Consider the curve $y = x^3 4x + 1$.
 - a) Find an equation for the tangent to the curve at the point (2,1).
 - b) What is the range of values of the curve's slope?
 - c) Find equations for the tangents to the curve at the points where the slope of the curve is 8.

Determine which of the following functions are differentiable at x = 0.

398.	$y = x^{1/3}$	402.	$y = x^{1/4}$
399.	$y = x^{2/3}$	403.	$y = x^{5/4}$
400.	$y = x^{4/3}$	404.	$y=x^{1/5}$
401.	$y = x^{5/3}$	405.	$y=x^{2/5}$

406. Based on the answers from the problems above, find a pattern for the differentiability of functions with exponents of the following forms: $x^{\text{even/odd}}$, $x^{\text{odd/odd}}$, $x^{\text{odd/even}}$.

To err is human, but when the eraser wears out ahead of the pencil, you're overdoing it. — Josh Jenkins

2.10 Tangents, Normals, and Continuity (Revisited)

491. Find the equation of the tangent line to the curve $y = \sqrt{x^2 - 3}$ at the point (2, 1).

492. Find the equation of the normal line to the curve $y = (3x - 1)^2(x - 1)^3$ at x = 0.

493. Find the equation of the tangent line to the curve $y = \sqrt{3x - 1}$ that is perpendicular to the line 3y + 2x = 3.

494. Find the equation of the normal line to the curve $y = x\sqrt{25 + x^2}$ at x = 0.

495. Find the equation of the tangent line to the curve $y = \frac{2-x}{5+x}$ at x = 1.

496. Find the equation of the normal line to the curve $y = \frac{5}{(5-2x)^2}$ at x = 0.

497. Find the equation of the tangent line to the curve $y = 3x^4 - 2x + 1$ that is parallel to the line y - 10x - 3 = 0.

498. The point P(3, -2) is not on the graph of $y = x^2 - 7$. Find the equation of each line tangent to $y = x^2 - 7$ that passes through P.

For the following Six problems, determine if f is differentiable at x = a.

505. Suppose that functions f and g and their first derivatives have the following values at x = -1 and at x = 0.

x	f(x)	g(x)	f'(x)	g'(x)
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivatives of the following combinations of f and g at the given value of x.

a) 3f(x) - g(x), x = -1b) $[f(x)]^3[g(x)]^3$, x = 0c) g(f(x)), x = -1d) f(g(x)), x = -1e) $\frac{f(x)}{g(x) + 2}$, x = 0f) g(x + f(x)), x = 0

Number rules the universe. —Pythagoras

372. $2x - 3 + 5x^{-2} - 14x^{-3}$ **373.** 12x + 13**374.** $\frac{1}{2}x^{-1/2} + \frac{34}{2}x^{-1/3}$ **375.** $2\pi x^2 + 20\pi x$ **380.** 14x, 14, 14x, 28 381. no 382. no 383. yes **384.** no 385. yes **386.** yes **392.** (-2, -5)**394.** 6π **396.** yes **397.** (a) 8(x-2) = y - 1 (b) $[-4,\infty)$ (c) 8(x-2) =y-1 and 8(x+2) = y-1**398.** no **399.** no **400.** yes **401.** yes **402.** no 403. no 404. no **405.** no **409.** (a) 6t (b) -6 **410.** (b) -(x+1) = y+2**412.** (a) 280 (b) mg/day **428.** a, d, and e 429. d.n.e. **430.** 0 **431.** 0 **432.** $\frac{\pi}{2}$ **433.** $-\frac{\pi}{2}$ **434.** $\frac{\pi}{2}$ **435.** only one is even, only one is neither **436.** $0, \frac{2\pi}{3}, \frac{4\pi}{3}$

437. $\frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$ **438.** $\frac{5\pi}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{15\pi}{12}, \frac{21\pi}{12}, \frac{23\pi}{12}$ **439.** $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$ **440.** $\frac{2\pi}{2}, \frac{\pi}{2}, \frac{4\pi}{2}, \frac{3\pi}{2}$ **441.** π **442.** (a) 9000 gal (b) 300 gal/hr (c) yes, the tank's volume is zero at t = 30hrs **444.** (a) yes (b)-(d) no 445. none must be true **446.** (a) a = b + 2 (c) a = 3, b = 1**453.** $-12y^2(y^3-5)^{-5}$ **455.** $\frac{-3p^4 + 21p^2 - 36p + 10}{(p^3 + 2p - 6)^2}$ **456.** $\frac{-3}{2x^{5/2}\sqrt{5}}$ **458.** $\frac{-z}{(36-z^2)^{3/2}}$ **460.** $\frac{10u+5}{6\sqrt{u-1}(2u+3)^{2/3}}$ **461.** $\frac{15}{(x+5)^2}$ **463.** $\frac{-20(x+5)}{(x-5)^3}$ **464.** $\frac{7}{(1-3x)^2}$ **466.** $\frac{-24x^2 + 80x + 47}{(5-3x)^2}$ **483.** $-3(x-\frac{\pi}{4}) = y-4; \frac{\pi}{2}$ **485.** cos x **486.** $\pi(x-1) = y-2$ **487.** $\csc\theta(\cot^2\theta + \csc^2\theta)$ **488.** $\sec\theta(\tan^2\theta + \sec^2\theta)$ **489.** $2\sin\theta$ **490.** $-\sin\theta - \cos\theta$ **497.** 10(x-1) = y-2**499.** no 500. no 501. no

502. yes 503. no 504. no **505.** (a) 5 (b) 0 (c) 8 (d) 2 (e) 6(f) - 1**517.** y = 1**518.** (a) $\frac{5}{4}(x-4) = y-2$ and $\frac{4}{5}(x-2) = y-4$ (b) 0 and $3\sqrt[3]{2}$ (c) 0 and $3\sqrt[3]{4}$ **519.** $(\pm\sqrt{7},0)$; slope is -2**520.** (3, -1) **521.** (a) $\frac{3x^y - y^2}{2xy - x^3}$ (b) at (1, -2) the tangent is 2(x-1) = y+2, at (1,3) the tangent is y=3(c) $\sqrt[5]{-24}$ **530.** $AC = \frac{5}{4}\sqrt{29}, BC = \frac{25}{2}$ **531.** $16\sqrt{3}$ **532.** 50π **533.** 15 **534.** $3\sqrt[3]{9}$ **535.** $6\sqrt{3}$ **536.** $2\sqrt{3}$ **545.** (a) 34994 dollars/week (b) 200 dollars/week (c) 34794 dollars/week **546.** $\frac{5}{16}\sqrt{3}$ m/hr **547.** 18 m/sec 548. 3 ft/sec **550.** $(\frac{1}{4}, \frac{1}{2})$ **551.** (a) $s = \frac{7}{8}d$ (b) $\frac{35}{8}$ ft/sec **552.** 1 ft/min; 40π ft²/min **553.** $\approx 7.1 \text{ in/min}$ **554.** $12 \text{ in}^3/\text{sec}$ **555.** (a) $\pm \frac{5}{3}$ units/sec (b) ± 24 **572.** ln *x* **579.** $\frac{2^x \ln \frac{2}{5} + \ln 5}{5^x}$ **582.** $\frac{3}{5(3x-2)}$ **584.** $\frac{x \ln x - x + 2}{x (\ln x)^2}$