2.4 Going Off on a Tangent

For the following five problems, find an Equation for the tangent line to the CURVE AT THE GIVEN x-COORDINATE.
387. $y=4-x^{2} ; \quad x=-1$
388. $y=2 \sqrt{x} ; \quad x=1$
389. $y=x-2 x^{2} ; \quad x=1$
390. $y=x^{-3} ; \quad x=-2$
391. $y=x^{3}+3 x ; \quad x=1$
392. At what points does the graph of $y=x^{2}+4 x-1$ have a horizontal tangent?
393. Find an equation for the tangent to the curve $y=\sqrt{x}$ that has slope $\frac{1}{4}$.
394. What is the instantaneous rate of change of the area of a circle when the radius is 3 cm ?
395. What is the instantaneous rate of change of the volume of a ball when the radius is 2 cm ?
396. Does the graph of $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ have a tangent at the origin? Justify your answer.
397. Consider the curve $y=x^{3}-4 x+1$.
a) Find an equation for the tangent to the curve at the point $(2,1)$.
b) What is the range of values of the curve's slope?
c) Find equations for the tangents to the curve at the points where the slope of the curve is 8.

Determine which of the following functions are differentiable at $x=0$.
398. $y=x^{1 / 3}$
402. $y=x^{1 / 4}$
399. $y=x^{2 / 3}$
403. $y=x^{5 / 4}$
400. $y=x^{4 / 3}$
404. $y=x^{1 / 5}$
401. $y=x^{5 / 3}$
405. $y=x^{2 / 5}$
406. Based on the answers from the problems above, find a pattern for the differentiability of functions with exponents of the following forms: $x^{\text {even/odd }}, x^{\text {odd/odd }}, x^{\text {odd/even }}$.

2.10 Tangents, Normals, and Continuity (Revisited)

491. Find the equation of the tangent line to the curve $y=\sqrt{x^{2}-3}$ at the point $(2,1)$.
492. Find the equation of the normal line to the curve $y=(3 x-1)^{2}(x-1)^{3}$ at $x=0$.
493. Find the equation of the tangent line to the curve $y=\sqrt{3 x-1}$ that is perpendicular to the line $3 y+2 x=3$.
494. Find the equation of the normal line to the curve $y=x \sqrt{25+x^{2}}$ at $x=0$.
495. Find the equation of the tangent line to the curve $y=\frac{2-x}{5+x}$ at $x=1$.
496. Find the equation of the normal line to the curve $y=\frac{5}{(5-2 x)^{2}}$ at $x=0$.
497. Find the equation of the tangent line to the curve $y=3 x^{4}-2 x+1$ that is parallel to the line $y-10 x-3=0$.
498. The point $P(3,-2)$ is not on the graph of $y=x^{2}-7$. Find the equation of each line tangent to $y=x^{2}-7$ that passes through P.

For the following six problems, determine if f is differentiable at $x=a$.
499. $f(x)=|x+5| ; a=-5$
502. $f(x)=\left\{\begin{array}{ll}-2 x^{2} & x<0 \\ 2 x^{2} & x \geq 0\end{array} \quad a=0\right.$
500. $f(x)=\left\{\begin{array}{ll}x+3 & x \leq-2 \\ -x-1 & x>-2\end{array} \quad a=-2\right.$
503. $f(x)=\left\{\begin{array}{ll}x^{2}-5 & x<3 \\ 3 x-5 & x \geq 3\end{array} \quad a=3\right.$
501. $f(x)=\left\{\begin{array}{ll}2 & x<0 \\ x-4 & x \geq 0\end{array} \quad a=0\right.$
504. $f(x)=\left\{\begin{array}{ll}\sqrt{2-x} & x<2 \\ (2-x)^{2} & x \geq 2\end{array} \quad a=2\right.$
505. Suppose that functions f and g and their first derivatives have the following values at $x=-1$ and at $x=0$.

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
-1	0	-1	2	1
0	-1	-3	-2	4

Evaluate the first derivatives of the following combinations of f and g at the given value of x.
a) $3 f(x)-g(x), \quad x=-1$
b) $[f(x)]^{3}[g(x)]^{3}, \quad x=0$
c) $g(f(x)), \quad x=-1$
d) $f(g(x)), \quad x=-1$
e) $\frac{f(x)}{g(x)+2}, \quad x=0$
f) $g(x+f(x)), \quad x=0$
372. $2 x-3+5 x^{-2}-14 x^{-3}$
373. $12 x+13$
374. $\frac{1}{2} x^{-1 / 2}+\frac{34}{3} x^{-1 / 3}$
375. $2 \pi x^{2}+20 \pi x$
380. $14 x, 14,14 x, 28$
381. no
382. no
383. yes
384. no
385. yes
386. yes
392. $(-2,-5)$
394. 6π
396. yes
397. $\begin{aligned} & \text { (a) } 8(x-2)=y-1(\mathrm{~b}) \\ & {[-4, \infty)(\mathrm{c}) 8(x-2)=} \\ & y-1 \text { and } 8(x+2)=y-1\end{aligned}$
398. no
399. no
400. yes
401. yes
402. no
403. no
404. no
405. no
409. (a) $6 t$ (b) -6
410. (b) $-(x+1)=y+2$
412. (a) 280 (b) mg/day
428. a, d, and e
429. d.n.e.
430. 0
431. 0
432. $\frac{\pi}{2}$
433. $-\frac{\pi}{2}$
434. $\frac{\pi}{2}$
435. only one is even, only one is neither
436. $0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
437. $\frac{3 \pi}{8}, \frac{7 \pi}{8}, \frac{11 \pi}{8}, \frac{15 \pi}{8}$
438. $\frac{5 \pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{15 \pi}{12}, \frac{21 \pi}{12}, \frac{23 \pi}{12}$
439. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}$
440. $\frac{2 \pi}{3}, \frac{\pi}{2}, \frac{4 \pi}{3}, \frac{3 \pi}{2}$
441. π
442. (a) 9000 gal (b) 300 gal/hr (c) yes, the tank's volume is zero at $t=30$ hrs
444. (a) yes (b)-(d) no
445. none must be true
446. (a) $a=b+2$ (c) $a=3$, $b=1$
453. $-12 y^{2}\left(y^{3}-5\right)^{-5}$
455. $\frac{-3 p^{4}+21 p^{2}-36 p+10}{\left(p^{3}+2 p-6\right)^{2}}$
456. $\frac{-3}{2 x^{5 / 2} \sqrt{5}}$
458. $\frac{-z}{\left(36-z^{2}\right)^{3 / 2}}$
460. $\frac{10 u+5}{6 \sqrt{u-1}(2 u+3)^{2 / 3}}$
461. $\frac{15}{(x+5)^{2}}$
463. $\frac{-20(x+5)}{(x-5)^{3}}$
464. $\frac{7}{(1-3 x)^{2}}$
466. $\frac{-24 x^{2}+80 x+47}{(5-3 x)^{2}}$
483. $-3\left(x-\frac{\pi}{4}\right)=y-4 ; \frac{\pi}{2}$
485. $\cos x$
486. $\pi(x-1)=y-2$
487. $\csc \theta\left(\cot ^{2} \theta+\csc ^{2} \theta\right)$
488. $\sec \theta\left(\tan ^{2} \theta+\sec ^{2} \theta\right)$
489. $2 \sin \theta$
490. $-\sin \theta-\cos \theta$
497. $10(x-1)=y-2$
499. no
500. no
501. no
502. yes
503. no
504. no
505. (a) 5 (b) 0 (c) 8 (d) 2 (e) 6 (f) -1
517. $y=1$
518. (a) $\frac{5}{4}(x-4)=y-2$ and $\frac{4}{5}(x-2)=y-4(\mathrm{~b}) 0$ and $3 \sqrt[3]{2}$ (c) 0 and $3 \sqrt[3]{4}$
519. $(\pm \sqrt{7}, 0)$; slope is -2
520. $(3,-1)$
521. (a) $\frac{3 x^{y}-y^{2}}{2 x y-x^{3}}$
(b) at $(1,-2)$ the tangent is $2(x-1)=y+2$, at $(1,3)$ the tangent is $y=3$
(c) $\sqrt[5]{-24}$
530. $A C=\frac{5}{4} \sqrt{29}, B C=\frac{25}{2}$
531. $16 \sqrt{3}$
532. 50π
533. 15
534. $3 \sqrt[3]{9}$
535. $6 \sqrt{3}$
536. $2 \sqrt{3}$
545. (a) 34994 dollars/week (b) 200 dollars/week (c) 34794 dollars/week
546. $\frac{5}{16} \sqrt{3} \mathrm{~m} / \mathrm{hr}$
547. $18 \mathrm{~m} / \mathrm{sec}$
548. $3 \mathrm{ft} / \mathrm{sec}$
550. $\left(\frac{1}{4}, \frac{1}{2}\right)$
551. (a) $s=\frac{7}{8} d$ (b) $\frac{35}{8} \mathrm{ft} / \mathrm{sec}$
552. $1 \mathrm{ft} / \mathrm{min} ; 40 \pi \mathrm{ft}^{2} / \mathrm{min}$
553. $\approx 7.1 \mathrm{in} / \mathrm{min}$
554. $12 \mathrm{in}^{3} / \mathrm{sec}$
555. (a) $\pm \frac{5}{3}$ units/sec (b) ± 24
572. $\ln x$
579. $\frac{2^{x} \ln \frac{2}{5}+\ln 5}{5^{x}}$
582. $\frac{3}{5(3 x-2)}$
584. $\frac{x \ln x-x+2}{x(\ln x)^{2}}$

