Sample Problems

1. Find the equation of the tangent line drawn to the graph of $-3 x^{2}-16 x y-2 y^{2}+3 y=178$ at the point $(-3,5)$.
2. Consider the relation determined by the equation $x y^{2}-5 x=2\left(y^{2}+x^{2} y-16\right)$. Find an equation for all tangent line(s) drawn to the graph of the relation at $x=3$.
3. If $y=f(x)$ is a function, we define the curvature as

$$
C(x)=\frac{\left|y^{\prime \prime}\right|}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}
$$

Prove that if $f(x)=\sqrt{r^{2}-x^{2}}$ where $r>0$, then the curvature is constant on the interval $(-r, r)$.

Practice Problems

1. Find the slope of the tangent line drawn to the graph of $x^{4}-y^{4}=2 x^{2} y+23$ to the point $(2,-1)$.
2. Find an equation for the tangent line drawn to the graph of $x^{3}+y^{3}-5 y^{2}=6 x^{2}+13 x-42$ at the point $(-3,5)$.
3. Find an equation for all tangent lines drawn to the graph of $2 x^{2}+y^{2}=5 y-x$ at $x=-2$.
4. Find an equation of all tangent lines drawn to the curve $x^{2}-x y+y^{2}=16$ at $x=0$.
5. Use implicit differentiation to compute y^{\prime} in terms of x and y.
a) $2 x^{2}+4 x y=10$
b) $x^{4}+y^{4}=20 y$
c) $x^{3}+y^{3}=2 x y$
d) $x^{3}+y^{3}=x^{2}+y^{2}$
e) $\ln x-2+y^{2}=y^{5}$
f) $x^{2}+y^{2}=\frac{1}{y}$
g) $\sin x+\cos y=-2 y^{3}$
h) $x^{4} y-x y^{4}=y$
i) $x^{3}+y^{3}=(x-y)^{5}$
j) $y^{3}+y=\sqrt{x^{2}-y^{2}}$
k) $2^{x+y}=x y^{3}$
l) $y+x y=\sqrt{x y-2}$
m) $\ln y=\sin (x y)-1$
n) $\left(\sin ^{3} x+\sin ^{3} y\right)^{2}=x+y$

Sample Problems - Answers

1.) $y=2 x+11$
2.) $y=-5 x+32$ and $y=-x+4$
3.) see solutions

Practice Problems - Answers

1. 10
2. $-2(x+3)=y-5$
3. $y=-7 x-12$ and $y=7 x+17$
4. $y=\frac{1}{2} x+4$ and $y=\frac{1}{2} x-4$
5. a) $y^{\prime}=-\frac{x+y}{x}$
b) $y^{\prime}=-\frac{x^{3}}{y^{3}-5}$
c) $y^{\prime}=\frac{3 x^{2}-2 y}{2 x-3 y^{2}}$
d) $y^{\prime}=\frac{-3 x^{2}+2 x}{3 y^{2}-2 y}$
e) $y^{\prime}=-\frac{1}{x\left(2 y-5 y^{4}\right)}$
f) $y^{\prime}=-\frac{2 x y^{2}}{2 y^{3}+1}$
g) $y^{\prime}=\frac{\cos x}{\sin y-6 y^{2}}$
h) $y^{\prime}=\frac{y^{4}-4 x^{3} y}{x^{4}-4 x y^{3}-1}$
i) $y^{\prime}=\frac{-3 x^{2}+5(x-y)^{4}}{3 y^{2}+5(x-y)^{4}}$
j) $y^{\prime}=\frac{x}{y+\left(y+y^{3}\right)\left(3 y^{2}+1\right)}$
k) $y^{\prime}=\frac{y^{3}-(\ln 2) 2^{x+y}}{-3 x y^{2}+(\ln 2) 2^{x+y}}$
l) $y^{\prime}=\frac{y-2 y \sqrt{x y-2}}{2 \sqrt{x y-2}-x+2 x \sqrt{x y-2}}$
m) $y^{\prime}=\frac{y^{2} \cos x y}{-x y \cos x y+1}$
n) $y^{\prime}=\frac{-6\left(\cos x \sin ^{2} x\right)\left(\sin ^{3} x+\sin ^{3} y\right)+1}{6\left(\cos y \sin ^{2} y\right)\left(\sin ^{3} x+\sin ^{3} y\right)-1}$

Sample Problems - Solutions

1. Find the equation of the tangent line drawn to the graph of $-3 x^{2}-16 x y-2 y^{2}+3 y=178$ at the point $(-3,5)$.
Solution: We start with implicit differentiation. We first differentiate both sides: Then we solve for y^{\prime}.

$$
\begin{aligned}
-3 x^{2}-16 x y-2 y^{2}+3 y & =178 \\
-6 x-16 y-16 x y^{\prime}-4 y y^{\prime}+3 y^{\prime} & =0 \\
-16 x y^{\prime}-4 y y^{\prime}+3 y^{\prime} & =6 x+16 y \\
y^{\prime}(-16 x-4 y+3) & =6 x+16 y \\
y^{\prime} & =\frac{6 x+16 y}{-16 x-4 y+3} \quad \text { compute } y^{\prime} \text { when } x=-3 \text { and } y=5 \\
y^{\prime} & =\frac{6(-3)+16(5)}{-16(-3)-4(5)+3}=2
\end{aligned}
$$

The line must pass through $(-3,5)$ and have slope 2 .

$$
\begin{aligned}
y-5 & =2(x+3) \\
y & =2 x+6+5=2 x+11
\end{aligned}
$$

Thus the answer is $y=2 x+11$.
2. Consider the relation determined by the equation $x y^{2}-5 x=2\left(y^{2}+x^{2} y-16\right)$. Find an equation for all tangent line(s) drawn to the graph of the relation at $x=3$.
Solution: We substitute $x=3$ into the equation and solve for y.

$$
\begin{aligned}
3 y^{2}-15 & =2\left(y^{2}+9 y-16\right) \\
3 y^{2}-15 & =2 y^{2}+18 y-32 \\
y^{2}-18 y+17 & =0 \\
(y-17)(y-1) & =0 \quad \Longrightarrow y_{1}=17 \quad y_{2}=1
\end{aligned}
$$

Thus there are two points with tangent lines: $(3,17)$ and $(3,1)$.
For the slope of each tangent lines, we differentiate both sides and solve for y^{\prime}.

$$
\begin{aligned}
x y^{2}-5 x & =2\left(y^{2}+x^{2} y-16\right) \\
y^{2}+x\left(2 y y^{\prime}\right)-5 & =2\left(2 y y^{\prime}+2 x y+x^{2} y^{\prime}\right) \\
y^{2}+2 x y y^{\prime}-5 & =4 y y^{\prime}+4 x y+2 x^{2} y^{\prime} \\
y^{2}-4 x y-5 & =4 y y^{\prime}+2 x^{2} y^{\prime}-2 x y y^{\prime} \\
y^{2}-4 x y-5 & =y^{\prime}\left(4 y+2 x^{2}-2 x y\right) \\
\frac{y^{2}-4 x y-5}{4 y+2 x^{2}-2 x y} & =y^{\prime}
\end{aligned}
$$

The slope of the tangent line drawn to $(3,17)$

$$
m_{1}=\frac{y^{2}-4 x y-5}{4 y+2 x^{2}-2 x y}=\frac{17^{2}-4(3)(17)-5}{4(17)+2(3)^{2}-2(3)(17)}=\frac{80}{-16}=-5
$$

We can easily find the point-slope form of the line with slope -5 , passing through $(3,17)$, it is $-5(x-3)=y-17$. Simplifying that, we obtain the slope intercept form which is $y=-5 x+32$. The other tangent line, passing through $(3,1)$ and has slope

$$
m_{2}=\frac{y^{2}-4 x y-5}{4 y+2 x^{2}-2 x y}=\frac{1^{2}-4(3)(1)-5}{4(1)+2(3)^{2}-2(3)(1)}=\frac{-16}{16}=-1
$$

Thus the slope is -1 and the equation of this line is $y-1=-(x-3)$. The slope intercept form is then $y=-x+4$.
3. If $y=f(x)$ is a function, we define the curvature as

$$
C(x)=\frac{\left|y^{\prime \prime}\right|}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}
$$

Prove that if $f(x)=\sqrt{r^{2}-x^{2}}$ where $r>0$, then the curvature is constant on the interval $(-r, r)$.
Proof: Let us write y for $f(x)$. We can see that on $(-r, r) y$ is always positive and that $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \quad \quad \quad \text { differentiate both sides } \\
2 x+2 y y^{\prime} & =0 \\
x+y y^{\prime} & =0 \quad \Longrightarrow y^{\prime}=-\frac{x}{y}
\end{aligned}
$$

For the second derivative, $y^{\prime \prime}$ we differentiate both sides of the statement $x+y y^{\prime}=0$

$$
\begin{aligned}
x+y y^{\prime} & =0 \\
1+y^{\prime} y^{\prime}+y y^{\prime \prime} & =0 \\
1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime} & =0
\end{aligned}
$$

$$
y^{\prime \prime}=\frac{-1-\left(y^{\prime}\right)^{2}}{y}=\frac{-1-\left(-\frac{x}{y}\right)^{2}}{y}=\frac{-1-\frac{x^{2}}{y^{2}}}{y}=\frac{\frac{-y^{2}-x^{2}}{y^{2}}}{y}=\frac{-x^{2}-y^{2}}{y^{3}}=\frac{-r^{2}}{y^{3}}
$$

Notice that since y is always positive, $y^{\prime \prime}=\frac{-r^{2}}{y^{3}}$ is always negative. Thus $\left|y^{\prime \prime}\right|=-y^{\prime \prime}$.

$$
\begin{aligned}
C(x) & =\frac{\left|y^{\prime \prime}\right|}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}=\frac{-y^{\prime \prime}}{\left(1+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}=\frac{\frac{r^{2}}{y^{3}}}{\left(1+\left(-\frac{x}{y}\right)^{2}\right)^{3 / 2}}=\frac{\frac{r^{2}}{y^{3}}}{\left(1+\frac{x^{2}}{y^{2}}\right)^{3 / 2}} \\
& =\frac{\frac{r^{2}}{y^{3}}}{\left(\frac{y^{2}+x^{2}}{y^{2}}\right)^{3 / 2}}=\frac{\frac{r^{2}}{y^{3}}}{\left(\frac{r^{2}}{y^{2}}\right)^{3 / 2}}=\frac{r^{2}}{y^{3}} \frac{r^{3}}{y^{3}}=\frac{1}{r}
\end{aligned}
$$

For more documents like this, visit our page at http://www.teaching.martahidegkuti.com and click on Lecture Notes. E-mail questions or comments to mhidegkuti@ccc.edu.

