Math Worksheet 3 - DOMAIN and RANGE

Given a function $y=f(x)$, the Domain of the function is the set of inputs and the Range is the set of resulting outputs.
Domains can be found algebraically; ranges are often found algebraically and graphically. Domains and Ranges are sets. Therefore, you must use proper set notation.

Algebraic method:

When finding the domain of a function, ask yourself what values can't be used. Your domain is everything else. There are simple basic rules to consider:

- The domain of all polynomial functions is the Real numbers \mathbf{R}. $\left.f(x)=x^{3}-6 x^{2}+5 x-11\right)$
Since $f(x)$ is a polynomial, the domain of $f(x)$ is \mathbf{R}. It can also be written $(-\infty, \infty)$
- Square root functions can not contain a negative underneath the radical. Set the expression under the radical greater than or equal to zero and solve for the variable. This will be your domain.

$$
g(t)=\sqrt{2-3 t}
$$

Since $g(t)$ is a square root, set the expression under the radical to greater than or equal to zero: $2-3 t \geq 0 \rightarrow 2 \geq 3 t \rightarrow 2 / 3 \geq t$. Therefore, the domain of $g(t)=(2 / 3, \infty)$

- Rational functions can not have zeros in the denominator. Determine which values of the input cause the denominator to equal zero, and set your domain to be everything else.

$$
h(p)=\frac{p-1}{p^{2}-4}
$$

- Since $h(p)$ is a rational function, the bottom can not equal zero. Set $p^{2}-4=0$ and solve: $p^{2}-4=0 \rightarrow(p+2)(p-2)=0 \rightarrow p=-2$ or $p=2$. These two p values need to be avoided, so the domain of $h(p)=\mathbf{R}-\{-2$ or 2$\}$ or $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$ The - minus is read as "except".

Graphical method:

Function $y=\sqrt{ }(x+4)$ has the following graph The domain of the function is $x \geq-4$, since x cannot take values less than -4 .
$D(f)=<-4, \infty)$
The range of a function is the possible \boldsymbol{y} values of a function that result when we substitute all the possible x-values into the function.
Make sure you look for minimum and maximum
 values of \boldsymbol{y}.
We say that the range for this function is $y \geq 0$
$R(f)=<0, \infty)$ (in Slovakia $H(f)=<0, \infty)$ - obor hodnôt)

Exercises

1. Algebraically determine the following domains. Use correct set notation.
2. $d(y)=y+3$
3. $g(k)=2 k^{2}+4 k-6$
4. $b(n)=\sqrt{2 n-8}$
5. $m(t)=\sqrt{9-3 t}$
6. $u(x)=\frac{x-5}{2 x+4}$
7. $a(r)=r+\frac{1}{r-1}$
8. $q(w)=\frac{w+4}{w^{2}+1}$
8.* $f(x)=\frac{x}{\sqrt{x+3}}$
9.* $t(v)=\sqrt{v^{2}+2 v-8}$
9. Find the domain and range of the following functions from the graph. Use correct set notation

Homework

1. A marathon race was completed by 5 participants. What is the range of times given in hours below?
$2.7 \mathrm{hr}, 8.3 \mathrm{hr}, 3.5 \mathrm{hr}, 5.1 \mathrm{hr}, 4.9 \mathrm{hr}$

2. Find the domain
a) $f(x)=\frac{x+3}{\sqrt{x-8}}$
b) $g(y)=\sqrt{3 y-54}$
c) $y=\frac{x+1}{5 x+7}$
