Practice problems set 4:
Continuity and discontinuity

1. Consider the following graph of the function $g(x)$.

Classify the locations and types of discontinuities of $g(x)$ in the interval $(0,8)$. Write the corresponding limits.
2. Determine the invervals on which the following functions are continuous.
a) $f(x)=\frac{2 x-6}{2 x^{2}-x-3}$
b) $g(x)=\sqrt{2-x}$
c) $f(x)=\ln \left(1-x^{2}\right)$
d) $g(x)=\frac{\sin (x)}{x-3}$
3. Classify the locations and types of discontinuities of the following functions. Write the corresponding limits.
a) $f(x)=-\frac{1}{(x-1)^{2}}$
b) $h(x)=\frac{3-\sqrt{x}}{9-x}$
c) $g(x)= \begin{cases}x^{2}-2 & \text { if } x \neq-3 \\ 5 & \text { if } x=-3\end{cases}$
d) $f(x)= \begin{cases}e^{x} & x<0 \\ x^{2} & x \geq 0\end{cases}$

Answers

1. Discontinuity: $x=2$, Type: infinite, Corresponding limits: $\lim _{x \rightarrow 2^{-}} g(x)=-\infty$ and $\lim _{x \rightarrow 2^{+}} g(x)=+\infty$
$\underline{\text { Discontinuity: }} x=4$, Type: removable, Corresponding limit: $\lim _{x \rightarrow 4} g(x)=4$
$\underline{\text { Discontinuity: }} x=6$, Type: jump (or step), Corresponding limits: $\lim _{x \rightarrow 6^{-}} g(x)=3.5$ and $\lim _{x \rightarrow 6^{+}} g(x)=$ -3.5
2. a) $(-\infty,-1) \cup\left(-1, \frac{3}{2}\right) \cup\left(\frac{3}{2},+\infty\right)$
b) $(-\infty, 2]$
c) $(-1,1)$
d) $(-\infty, 3) \cup(3,+\infty)$
3. a) Discontinuity: $x=1$, Type: Infinite, Corresponding limit: $\lim _{x \rightarrow 1} f(x)=-\infty$
b) Discontinuity: $x=9$, Type: Removable, Corresponding limit: $\lim _{x \rightarrow 3} h(x)=\frac{1}{6}$
c) Discontinuity: $x=-3$, Type: Removable, Corresponding limit: $\lim _{x \rightarrow-3} g(x)=7$
d) Discontinuity: $x=0$, Type: Jump, Corresponding limits: $\lim _{x \rightarrow 0^{-}} f(x)=1$ and $\lim _{x \rightarrow 0^{+}} f(x)=0$
