MTH 148

Solutions for Problems on the Intermediate Value Theorem

1. Use the Intermediate Value Theorem to show that there is a positive number c such that $c^{2}=2$.

Solution: Let $f(x)=x^{2}$. Then f is continuous and $f(0)=0<2<4=f(2)$. By the IVT there is $c \in(0,2)$ such that $c^{2}=f(c)=2$.
2. If $f(x)=x^{3}-x^{2}+x$, show that there is $c \in \mathbb{R}$ such that $f(c)=10$.

Solution: $f(0)=1$ and $f(3)=3^{3}-3^{2}+3=27-9+3=21$, so $f(0)<10<f(3)$. Since f is continuous everywhere, there must be $c \in \mathbb{R}$ such that $f(c)=10$.
3. If $g(x)=x^{5}-2 x^{3}+x^{2}+2$, show that there is $c \in \mathbb{R}$ such that $g(c)=-1$.

Solution: First, g is continuous everywhere. Then $g(0)=2$ and $g(-2)=$ $-32-2(-8)+4+2=-32+22=-10$. So $g(-2)<-1<g(0)$. By IVT there is $c \in(-2,0)$ such that $g(c)=-1$.

In problems 4-7, use the Intermediate Value Theorem to show that there is a root of the given equation in the given interval.
4. $x^{3}-3 x+1=0,(0,1)$

Solution: Let $f(x)=x^{3}-3 x+1$. Then f is continuous everywhere, $f(0)=1$, and $f(1)=1-3+1=-1$. Therefore $f(1)<0<f(0)$ and by the IVT there is $x \in(0,1)$ such that $f(x)=0$.
5. $x^{5}-2 x^{4}-x-3=0,(2,3)$

Solution: Let $f(x)=x^{5}-2 x^{4}-x-3$. Then f is continuous everywhere, $f(2)=32-32-2-3=-5$, and $f(3)=243-162-3-3=75$. Therefore $f(2)<0<f(3)$ and by the IVT there is $x \in(2,3)$ such that $f(x)=0$.
6. $x^{3}+2 x=x^{2}+1,(0,1)$

Solution: Let $f(x)=x^{3}-x^{2}+2 x-1$. Then f is continuous everywhere, $f(0)=-1$, and $f(1)=1-1+2-1=1$. Therefore $f(0)<0<f(1)$ and by the IVT there is $x \in(0,1)$ such that $f(x)=0$ But then $x^{3}-2 x^{2}+2 x-1=0$ or $x^{3}+2 x=x^{2}+1$.
7. $x^{2}=\sqrt{x+1},(1,2)$

Solution: Let $f(x)=x^{2}-\sqrt{x+1}$. Then f is continuous for all $x>-1$, $f(1)=1-\sqrt{2}$, and $f(2)=4-\sqrt{3}$. Therefore $f(1)<0<f(2)$ and by the IVT there is $x \in(1,2)$ such that $f(x)=0$. But then $x^{2}-\sqrt{x+1}=0$ or $x^{2}-\sqrt{x+1}$.
8. Let f be a continuous function on $[0,1]$. Show that if $-1 \leq f(x) \leq 1$ for all $x \in[0,1]$ then there is $c \in[0,1]$ such that $[f(c)]^{2}=c$.

Solution: If $f(x)$ is continuous on $[0,1]$ then so is $[f(x)]^{2}$. Set $g(x)=[f(x)]^{2}-x$. Then g is also continuous on $[0,1]$. Now $g(0)=[f(0)]^{2}-0=[f(0)]^{2} \geq 0$ and $g(1)=[f(1)]^{2}-1 \leq 0$, so by IVT there is $c \in[0,1]$ such that $g(c)=0$. Then $[f(c)]^{2}-c=0$ or $[f(c)]^{2}=c$.

