UNIT 5 - Series

Name \qquad PER \qquad DATE \qquad DO NOW

Answer the following question and show your work?
What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}$?
(A) 1
(B) 2
(C) 4
(D) 6
(E) The series diverges

TPS-C

If $f(x)=\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!}$, then $f^{\prime}(x)=$
(A) $\frac{x^{3}}{3}+\frac{x^{5}}{5 \cdot 2!}+\frac{x^{7}}{7 \cdot 3!}+\frac{x^{9}}{9 \cdot 4!}+\cdots+\frac{x^{(2 n+1)}}{(2 n+1) n!}+\cdots$
(B) $x+\frac{3 x^{3}}{2!}+\frac{5 x^{5}}{3!}+\frac{7 x^{7}}{4!}+\cdots+\frac{(2 n-1) x^{(2 n-1)}}{n!}+\cdots$
(C) $2+2 x^{2}+x^{4}+\frac{x^{6}}{3}+\cdots+\frac{2 x^{2(n-1)}}{(n-1)!}+\cdots$
(D) $2 x+2 x^{3}+x^{5}+\frac{x^{7}}{3}+\cdots+\frac{2 n x^{(2 n-1)}}{n!}+\cdots$

Taylor Polynomials and Approximations

Polynomial functions can be used to approximate other elementary functions such as $\sin x, e^{x}$, and $\ln x$.

Example 1:

Find the equation of the tangent line for $f(x)=\sin x$ at $x=0$, then use it to approximate $\sin (0.2)$. Is this an over or an under approximation of $\sin (0.2)$?

The equation of the tangent line used in Ex. 1 is called a first-degree Taylor polynomial. Taylor polynomials of higher degree can be used to obtain increasingly better approximations of non-polynomial functions within a certain radius from a center of approximation $x=c$.

Example 2:

On your calculator graph $y 1=\sin x$. Use the following window: $X[-9,9], Y[-4,4]$. Now in $y 2=$, graph successively, adding an extra term each time, the following: $y 2: x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}$
What do you notice? What is $y 1(0) ? y 2(0)$? What is $y 1(0.2) ? y 2(0.2)$?

Definition of an n th-degree Tavlor polvnomial:

If f has n derivatives at $x=c$, then the polynomial

is called the n th-degree Taylor polynomial for f centered at c , named after Brook Taylor, an English mathematician.
Note 1: \square
Note 2: \square

n th-degree Maclaurin polynomial for f, named after Scottish mathematician, Colin Maclaurin.

Example 1

Construct the seventh order Taylor polynomial and the Taylor series for $\sin \mathrm{x}$ and $\mathrm{x}=\mathbf{0}$.

Example 2

Find the fourth order Taylor polynomial that approximates $y=\cos 2 x$, near $x=0$.

Turn your book to page 491

Examples

List the first four non-zero terms of the Maclaurin Polynomials for $f(x)=\sin x, f(x)=\cos x$, and $f(x)=e^{x}$, the find the following Maclaurin Polynomials.
(a) $g(x)=\sin (2 x)$
(b) $g(x)=x \cos (x)$
(c) $g(x)=4 e^{x^{2}}$

